Vol. 40
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-04-09
A Dirichlet to Neumann Map Based Hybridization of a Mode Matching and Offset Moment Method for Horn Antennas Analysis
By
Progress In Electromagnetics Research B, Vol. 40, 101-140, 2012
Abstract
A hybrid technique for the analysis of pyramidal and conical horn antennas is presented based on an exact vector Dirichlet to Neumann (DtN) mapping mathematical formalism. The transition from the feeding waveguide to the radiating aperture is analyzed by using the mode matching technique (MMT) employing a stepped-waveguide approach. Love's field equivalence principle is employed for the de nition of equivalent electric and magnetic current densities at the horn aperture. Explicitly, these currents are located at a plane parallel to the aperture but slightly shifted inwards in order to implement an offset Moment Method for their discretization, which is free of integral singularities. The unbounded area field generated by these sources is enforced to be continuous with the internal mode matching field by strictly following DtN principles. Besides that, this procedure mimics a By-moment approach ensuring the decoupling of the required number of modes from that of the sources discretization degrees of freedom. Finally, the implemented hybrid method is validated against published experimental and numerical results for a number of pyramidal and conical horn antennas including various corrugated geometries.
Citation
Stergios G. Diamantis, Anastasios P. Orfanidis, Michael T. Chryssomallis, and George Kyriacou, "A Dirichlet to Neumann Map Based Hybridization of a Mode Matching and Offset Moment Method for Horn Antennas Analysis," Progress In Electromagnetics Research B, Vol. 40, 101-140, 2012.
doi:10.2528/PIERB12011706
References

1. Deguchi, H., T. Okada, M. Tsuji, and H. Shigesawa, "Multimode horn with optimum gain within circular area," Electronics and Communications in Japan, Part 1, Vol. 89, No. 2, 12-20, 2006.
doi:10.1002/ecja.20246

2. Lier, E. and A. Kishk, "A new class of dielectric-loaded hybridmode horn antennas with selective gain: Design and analysis by single mode model and method of moments," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 1, 125-138, 2005.
doi:10.1109/TAP.2004.840504

3. Encinar, J. A. and J. M. Rebollar, "A hybrid technique for analyzing corrugated and noncorrugated rectangular horns," IEEE Trans. on Antennas and Propagation, Vol. 34, No. 8, 961-968, 1986.
doi:10.1109/TAP.1986.1143930

4. Jull, E. V., "Reflection from the aperture of a long E-plane sectorial horn," IEEE Trans. on Antennas and Propagation, Vol. 20, No. 1, 61-68, 1972.
doi:10.1109/TAP.1972.1140137

5. Liu, K., C. A. Balanis, C. R. Birtcher, and G. C. Barber, "Analysis of pyramidal horn antennas using moment methods," IEEE Trans. on Antennas and Propagation, Vol. 41, No. 10, 1379-1389, 1993.
doi:10.1109/8.247778

6. Wriedt, T., K. H. Wolff, F. Arndt, and U. Tucholke, "Rigorous hybrid field theoretic design of stepped rectangular waveguide mode converters," IEEE Trans. on Antennas and Propagation, Vol. 41, No. 37, 780-790, 1989.
doi:10.1109/8.29365

7. Bhattacharyya, A. K. and G. Z. Rollins, "Accurate radiation and impedance characteristics of horn antennas-A moment-method model ," IEEE Trans. on Antennas and Propagation, Vol. 44, No. 4, 523-531, 1996.
doi:10.1109/8.489304

8. Orfanidis, A. P., G. A. Kyriacou, and J. N. Sahalos, "A mode matching technique for the study of cylindrical and coaxial waveguide discontinuities based on a closed form coupling integrals ," IEEE Trans. on Microwave Theory and Techniques, Vol. 48, 880-883, 2000.
doi:10.1109/22.841894

9. Diamantis, S. G., A. P. Orfanidis, G. A. Kyriacou, and J. N. Sahalos, "Hybrid mode matching and auxiliary sources technique for horn antenna analysis," Microwave and Optical Technology Letters, Vol. 49, No. 3, 734-739, 2007.
doi:10.1002/mop.22233

10. Diamantis, S. G., A. P. Orfanidis, and G. A. Kyriacou, "Conical horn antennas employing an offset moment method and mode matching technique," IEEE Trans. on Magnetics, Vol. 45, No. 3, 1092-1095, 2009.
doi:10.1109/TMAG.2009.2012629

11. Marcuvitz, N., Waveguide Handbook, Peregrinus, Stevenage, UK, 1986.

12. Uher, J., J. Bornemann, and U. Rosenberg, Waveguide Components for Antenna Feed Systems: Theory and CAD, Artech House, Norwood, MA, 1993.

13. Collin, R. G. and F. J. Zucker, Antenna Theory, Part 1, McGraw-Hill, NY, 1969.

14. Balanis, C. A., Advance Engineering Electromagnetics, Wiley, NY, 1989.

15. Keller, J. B. and D. Givoli, "Exact non-reflecting boundary conditions," J. Comput. Phys., Vol. 82, 172-192, 1989.
doi:10.1016/0021-9991(89)90041-7

16. Allilomes, P. C. and G. A. Kyriacou, "A nonlinear finite-element leaky-waveguide solver," IEEE Trans. on Microwave Theory and Techniques, Vol. 55, No. 7, 1496-1510, 2007.
doi:10.1109/TMTT.2007.900306

17. Teniente, J., R. Gonzalo, and C. del Ro, "Ultra-wide band corrugated profiled horn antenna design," IEEE Microwave Wireless Components Letters, Vol. 12, No. 1, 20-21, 2002.
doi:10.1109/7260.975722

18. Harrington, R. F., Field Computation by Moment Methods, IEEE Press, Piscataway, NJ, 1993.

19. Barybin, A. A., "Modal expansions and orthogonal complements in the theory of complex media waveguide excitation by external sources for isotropic, anisotropic, and bianisotropic media ," Progress In Electromagnetics Research, Vol. 19, 241-300, 1998.
doi:10.2528/PIER97120800

20. Clarricoats, P. J. B. and A. D. Olver, Corrugated Horns for Microwave Antennas, IEE Electromagnetics Waves Series 18, Peter Peregrinus, 1984.

21. Collin, R. E., "Field Theory of Guided Waves," IEEE Press, 1990.

22. Nye, J. F. and W. Liang, "Theory and measurement of the field of a pyramidal horn," IEEE Trans. on Antennas Propagation, Vol. 44, 1488-1498, 1996.
doi:10.1109/8.542074

23. Mayhew-Ridgers, G., J. W. Odendaal, and J. Joubert, "Improved diffraction model and numerical validation for horn antenna gain calculations," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 19, No. 6, 701-711, 2009.
doi:10.1002/mmce.20394

24. Catedra, M. F., "A comparison between two kinds of equivalent currents to analyze conducting bodies with apertures using moment methods: Application to horns with symmetry of revolution ," IEEE Trans. on Antennas and Propagation, Vol. 35, No. 7, 782-789, 1987.
doi:10.1109/TAP.1987.1144179

25. Stutzman, W., Antenna Theory and Design, John Wiley, 1981.

26. Kishk, A. A. and C.-S. Lim, "Comparative analysis between conical and Gaussian profiled horn antennas," Progress In Electromagnetics Research, Vol. 38, 147-166, 2002.
doi:10.2528/PIER02052406

27. Zhang, T.-L., Z.-H. Yan, F. Fan, and B. Li, "Design of a Ku-band compact corrugated horn with high Gaussian beam efficiency," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 123-129, 2011.
doi:10.1163/156939311793898297