Vol. 38
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-01-22
Characterization of Open Cell SiC Foam Material
By
Progress In Electromagnetics Research B, Vol. 38, 225-239, 2012
Abstract
This paper presents characterization and modeling of microwave characteristics of SiC foam material. Transmission and reflection measurements are performed in X, K and Ka band for the samples of two different pore sizes and three different thicknesses. Effective and frequency dependent dielectric permittivity is extracted for 50PPI 10 mm sample, while for the other samples it was not possible because of density gradient in the samples. By calculation of Mie scattering efficiencies approximate magnitude of dominant loss mechanism (scattering or absorption) at certain frequencies is predicted.
Citation
Irena Zivkovic, and Axel Murk, "Characterization of Open Cell SiC Foam Material," Progress In Electromagnetics Research B, Vol. 38, 225-239, 2012.
doi:10.2528/PIERB11121504
References

1. Nornikman, H., et al. "Setup and results of pyramidal microwave absorbers using rice husks," Progress In Electromagnetics Research, Vol. 111, 141-161, 2011.
doi:10.2528/PIER10101203

2. Wang, J., et al. "Three-dimensional metamaterial microwave absorbers composed of coplanar magnetic and electric resonators," Progress In Electromagnetics Research Letters, Vol. 7, 15-24, 2009.
doi:10.2528/PIERL09012003

3. Ramprecht, J., M. Norgren, and D. Sjoberg, "Scattering from a thin magnetic layer with a periodic lateral magnetization: Application to electromagnetic absorbers," Progress In Electromagnetics Research, Vol. 83, 199-224, 2008.
doi:10.2528/PIER08042805

4. Harris, C. I., et al. "Progress towards SiC products," Applied Surface Science, No. 184, 393-398, 2001.
doi:10.1016/S0169-4332(01)00525-6

5. Siegel, P. H., R. H. Tufas, and P. Goy, "A simple millimeter wave blackbody load," Ninth International Conference on Space THz Technology, March 17--19, 1998.

6. Klaassen, T. O., et al. "Optical characterization of absorbing coatings for submillimeter radiation," 12th International Conference on Space THz Technology, February 14--16, 2001.

7. Zhao, D. L., F. Luo, and W. C. Zhou, "Microwave absorbing property and complex permittivity of nano SiC particles doped with nitrogen," Journal of Alloys and Compounds, Vol. 490, 190-194, 2010.
doi:10.1016/j.jallcom.2009.09.008

8. Su, X., et al. "Improvement of permittivity of SiC with Al doping by combustion synthesis using Al2O3," Journal of Alloys and Compounds, Vol. 492, L16-L19, 2010.
doi:10.1016/j.jallcom.2009.11.097

9. Zhang, H., J. Zhang, and H. Zhang, "Numerical predictions for radar absorbing silicon carbide foams using a finite integration technique with a perfect boundary approximation," Smart Materials and Structures, Vol. 15, 759-766, 2006.
doi:10.1088/0964-1726/15/3/011

10. Zhang, H., J. Zhang, and H. Zhang, "Computation of radar absorbing silicon carbide foams and their silica matrix composites," Computational Materials Science, Vol. 38, 857-864, 2007.
doi:10.1016/j.commatsci.2006.05.024

11. Shvets, G., "Photonic approach to making a material with a negative index of refraction," Phys. Rev. B, Vol. 67, No. 3, 2003.
doi:10.1103/PhysRevB.67.035109

12. Bohren, C. F. and D. R. Hufman, Absorption and Scattering of Light by Small Particles, Wiley-VCH, Weinheim, 2004.

13. Mätzler, C., MATLAB Functions for Mie Scattering and Absorption, No. 2002-08, IAP Research Report, Institut für Angewandte Physik, Universität Bern, 2002.

14. Sihvola, A., Electromagnetic Mixing Formulas and Applications, IEE Electromagnetic Waves Series 47, London, 1999.
doi:10.1049/PBEW047E

15. Watari, K., et al. "Effect of grain boundaries on thermal conductivity of silicone carbide ceramic at 5 to 1300 K," J. Am. Ceram. Soc., Vol. 86, No. 10, 1812-1814, 2003.
doi:10.1111/j.1151-2916.2003.tb03563.x

16. Takeuchi, Y., et al. "RF dielectric properties of SIC ceramics and their application to design of HOM absorbers," Proceedings of the Particle Accelerator Conference, 1195-1197, May 16--20, 2005.

17. Kaatze, U., "Techniques for measuring the microwave dielectric properties of materials," Metrologia, Vol. 47, No. 2, S91-S113, 2010.
doi:10.1088/0026-1394/47/2/S10

18. Kumar, A. and G. Singh, "Measurement of dielectric constant and loss factor of the dielectric material at microwave frequencies," Progress In Electromagnetics Research, Vol. 69, 47-54, 2007.
doi:10.2528/PIER06111204

19. Göllei, A., et al. "Apparatus and method to measure dielectric properties (ε‘ and ε’‘) of ionic liquids," Review of Scientific Instruments, Vol. 80, No. 044703, American Institute of Physics, 2009.

20. Mätzler, C., "Eddy currents in heterogeneous mixtures," Journal of Electromagnetic Waves and Applications, Vol. 2, No. 5--6, 473-479, 1988.
doi:10.1163/156939388X00107

21. Molenberg, I., et al. "Foamed nanocomposites for EMI shielding applications," Advanced Microwave and Millimeter Wave Technologies: Semiconductor Devices, Circuits and Systems, Intech, March 2010.