PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 38 > pp. 205-223

MODELING TERAHERTZ DIFFUSE SCATTERING FROM GRANULAR MEDIA USING RADIATIVE TRANSFER THEORY

By K. M. Nam, L. M. Zurk, and S. Schecklman

Full Article PDF (554 KB)

Abstract:
Terahertz (THz) spectroscopy can potentially be used to probe and characterize inhomogeneous materials. However, identification of spectral features from diffuse scattering by inhomogeneous materials has not received much attention until now. In this paper, THz diffuse scattering from granular media is modeled by applying radiative transfer (RT) theory for the first time in THz sensing. The diffuse scattered field from compressed polyethylene (PE) pellets containing steel spheres was measured in both transmission and reflection modes using a THz time domain spectroscopy (THz-TDS) system. The RT model was validated by successfully reproducing qualitative features observed in experimental results. Diffuse intensity from granular media containing lactose was then simulated using RT theory. In the results, spectral features of lactose were observed in the diffuse intensity spectra from the granular media.

Citation:
K. M. Nam, L. M. Zurk, and S. Schecklman, "Modeling terahertz diffuse scattering from granular media using radiative transfer theory," Progress In Electromagnetics Research B, Vol. 38, 205-223, 2012.
doi:10.2528/PIERB11102304
http://jpier.org/pierb/pier.php?paper=11102304

References:
1. Mickan, S. P. and X.-C. Zhang, "T-ray sensing and imaging," Int. J. High Speed Electron. Syst., Vol. 13, No. 2, 601-676, 2003.
doi:10.1142/S0129156403001843

2. Van Exter, M. and D. R. Grischkowsky, "Characterization of an optoelectronic terahertz beam system," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 11, 1684-1691, 1990.
doi:10.1109/22.60016

3. Kemp, M. C., P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, "Security applications of terahertz technology," Proc. SPIE Int. Soc. Opt. Eng., Vol. 5070, 44-52, 2003.

4. Federici, J. F., B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, "THz imaging and sensing for security applications --- Explosives, weapons and drugs," Semicond. Sci. Technol., Vol. 20, No. 7, S266-S280, 2005.
doi:10.1088/0268-1242/20/7/018

5. Zeitler, A. (ed.), Terahertz spectroscopy: Theory and Applications, Springer Press, 2012.

6. Zurk, L. M., B. Orlowski, D. P. Winebrenner, E. I. Thorsos, M. R. Leahy-Hoppa, and L. M. Hayden, "Terahertz scattering from granular material," J. Opt. Soc. Am. B, Vol. 24, No. 9, 2238-2243, 2007.
doi:10.1364/JOSAB.24.002238

7. Arbab, M. H., A. Chen, E. I. Thorsos, D. P. Winebrenner, and L. M. Zurk, "Effect of surface scattering on terahertz time domain spectroscopy of chemicals," Proc. SPIE Int. Soc. Opt. Eng., Vol. 6893, 2008.

8. Henry, S. C., G. P. Kniffin, S. Schecklman, L. M. Zurk, and A. Chen, "Measurement and modeling of rough surface effects on terahertz spectroscopy," Proc. SPIE Int. Soc. Opt. Eng., Vol. 7601, 2010.

9. Sundberg, G., L. M. Zurk, S. Schecklman, and S. Henry, "Modeling rough-surface and granular scattering at terahertz frequencies using the finite-difference time-domain method," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 10, 3709-3719, 2010.
doi:10.1109/TGRS.2010.2048717

10. Schecklman, S., L. M. Zurk, S. C, Henry, and G. P. Kniffin, "Terahertz material detection from diffuse surface scattering," J. Appl. Phys., Vol. 109, No. 9, 2011.
doi:10.1063/1.3561806

11. Bandyopadhyay, A., A. Sengupta, R. B. Barat, D. E. Gary, and J. F. Federici, "Grain size dependent scattering studies of common materials using THz time domain techniques," Proc. SPIE Int. Soc. Opt. Eng., Vol. 6120, 2006.

12. Bandyopadhyay, A., A. Sengupta, R. B. Barat, D. E. Gary, J. F. Federici, M. Chen, and D. B. Tanner, "Effects of scattering on THz spectra of granular solids," Int. J. Infrared Millim. Waves, Vol. 28, No. 11, 969-978, 2007.
doi:10.1007/s10762-007-9276-y

13. Chau, K. J., S. Mujumdar, and A. Y. Elezzabi, "Terahertz propagation in non-homogeneous strongly scattering media," Proc. SPIE Int. Soc. Opt. Eng., Vol. 5727, 177-185, 2005.

14. Pearce, J. and D. M. Mittleman, "Scale model experimentation: Using terahertz pulses to study light scattering," Phys. Med. Biol., Vol. 47, No. 21, 3823-3830, 2002.
doi:10.1088/0031-9155/47/21/321

15. Pearce, J. and D. M. Mittleman, "Using terahertz pulses to study light scattering," Physica B-Condensed Matter, Vol. 338, No. 1--4, 92-96, 2003.
doi:10.1016/S0921-4526(03)00467-8

16. Fletcher, J. R., G. P. Swift, D. C. Dai, J. A. Levitt, and J. M. Chamberlain, "Propagation of terahertz radiation through random structures: An alternative theoretical approach and experimental validation," J. Appl. Phys., Vol. 101, No. 1, 2007.
doi:10.1063/1.2403860

17. Zhang, X.-C., "Terahertz wave imaging: Horizons and hurdles," Phys. Med. Biol., Vol. 47, No. 21, 3667-3677, 2002.
doi:10.1088/0031-9155/47/21/301

18. Ishimaru, A., Wave Propagation and Scattering in Random Media, IEEE Press-Oxford University Press, 1997.

19. Chandrasekhar, S., Radiative Transfer, Dover Publications, Inc., 1960.

20. Shin, R. T. and J. A. Kong, "Radiative transfer theory for active remote sensing of a homogeneous layer containing spherical scatterers," J. Appl. Phys., Vol. 52, No. 6, 4221-4230, 1981.
doi:10.1063/1.329271

21. Tsang, L. and J. A. Kong, "Radiative transfer theory for scattering by layered media," J. Appl. Phys., Vol. 50, No. 4, 2465-2469, 1979.
doi:10.1063/1.326255

22. Fung, A. K. and H. J. Eom, "Application of a combined rough surface and volume scattering theory to sea ice and snow backscatter," IEEE Trans. Geosci. Remote Sens., Vol. GE-20, No. 4, 528-536, 1982.
doi:10.1109/TGRS.1982.350421

23. Ma, Q., A. Ishimaru, P. Phu, and Y. Kuga, "Transmission, reflection, and depolarization of an optical wave for a single leaf," IEEE Trans. Geosci. Remote Sens., Vol. 28, No. 5, 865-872, 1990.
doi:10.1109/TGRS.1990.1238684

24. Tsang, L., C. Chen, A. Chang, J. Guo, and K. Ding, "Dense media radiative transfer theory based on quasicrystalline approximation with applications to passive microwave remote sensing of snow," Radio Sci., Vol. 35, No. 3, 731-749, 2000.
doi:10.1029/1999RS002270

25. Tsang, L., J. Pan, D. Liang, Z. Li, D. Cline, and Y. Tan, "Modeling active microwave remote sensing of snow using dense media radiative transfer (DMRT) theory with multiple-scattering effects," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 4, 990-1004, 2007.
doi:10.1109/TGRS.2006.888854

26. Wen, B., L. Tsang, D. P. Winebrenner, and A. Ishimaru, "Dense medium radiative transfer theory: Comparison with experiment and application to microwave remote sensing and polarimetry," IEEE Trans. Geosci. Remote Sens., Vol. 28, No. 1, 46-59, 1990.
doi:10.1109/36.45744

27. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves, Volume 3, Advanced Topics, John Wiley and Sons, 2001.
doi:10.1002/0471224278

28. Nam, K., Modeling terahertz diffuse scattering from granular media using radiative transfer theory, Master's Thesis, Portland State University, 2011.

29. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves, Volume 1, Theories and Applications, John Wiley and Sons, 2000.
doi:10.1002/0471224286

30. SmallParts.com, c/o Amazon.com, LLC, P. O. Box 81226, Seattle, WA 98108--1300, United States.
doi:10.1002/0471224286

31. Zurk, L. M., L. Tsang, K. H. Ding, and D. P. Winebrenner, "Monte Carlo simulations of the extinction rate of densely packed spheres with clustered and nonclustered geometries," J. Opt. Soc. Am. A, Vol. 12, No. 8, 1772-1781, 1995.
doi:10.1364/JOSAA.12.001772

32. Zurk, L. M., L. Tsang, and D. P. Winebrenner, "Scattering properties of dense media from Monte Carlo simulations with application to active remote sensing of snow," Radio Sci., Vol. 31, No. 4, 803-819, 1996.
doi:10.1029/96RS00939

33. Ordal, M. A., R. J. Bell, R. W. Alexander, Jr, L. L. Long, and M. R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Applied Optics, Vol. 24, No. 24, 4493-4499, 1985.
doi:10.1364/AO.24.004493

34. Ketprom, U., Y. Kuga, S. Jaruwatanadilok, and A. Ishimaru, "Experimental and numerical analysis of polarized light through random distributed spherical particles," Proc. SPIE Int. Soc. Opt. Eng., Vol. 4819, 35-45, 2002.


© Copyright 2010 EMW Publishing. All Rights Reserved