Vol. 37
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-12-09
Electromagnetic Waves Scattering at Interfaces Between Dielectric Waveguides: a Review on Analysis and Applications
By
Progress In Electromagnetics Research B, Vol. 37, 103-124, 2012
Abstract
The scattering properties of dielectric waveguides connected in cascade can be obtained by using the generalized scattering matrix concept, together with the generalized telegraphist equations formulism and the modal matching technique. This review aims to show the potential of periodic structures in dielectric waveguides in order to gain control of light in the design of microwave and photonic devices. The new inverted Π dielectric waveguide is presented. Numerical and experimental results of the complex scattering coefficients were obtained at microwave frequencies. At optical frequencies, results for planar waveguide photonic crystals are included and compared with the numerical values from commercial software. In all cases the agreement was excellent. Electromagnetic and photonic band gaps, photonic windows, optical switching, optical resonant microcavities as well as refractive index optical sensors can be achieved by means of dielectric waveguides in cascade.
Citation
Jose Rodriguez García, Miguel García Granda, Adrian Fernandez Gavela, Silvino Jose Antuna Presa, Maria Rodriguez Lastra, and Susana Fernández Fernández, "Electromagnetic Waves Scattering at Interfaces Between Dielectric Waveguides: a Review on Analysis and Applications," Progress In Electromagnetics Research B, Vol. 37, 103-124, 2012.
doi:10.2528/PIERB11083106
References

1. Rodríguez, J. and A. Prieto, "Wide-band directional couplers in dielectric waveguide," IEEE Trans. Microwave Theory and Techniques, Vol. 35, 681-687, 1987.
doi:10.1109/TMTT.1987.1133732

2. Solano, M. A., A. Prieto, et al. "Reduction of losses in dielectric waveguide Y-junctions with wide aperture angles," Int. Journal of Electronics, Vol. 63, 741-749, 1987.
doi:10.1080/00207218708939180

3. Strube, J. and F. Arndt, "Rigorous hybrid-mode analysis of the transition from rectangular waveguide to shielded dielectric image guide," IEEE Trans. Microwave Theory and Techniques, Vol. 33, 391-401, 1985.
doi:10.1109/TMTT.1985.1133010

4. Malherbe, J. A. G., J. H. Cloete, et al. "A transition from rectangular to nonradiating dielectric waveguide," IEEE Trans. Microwave Theory and Techniques, Vol. 33, 539-543, 1985.
doi:10.1109/TMTT.1985.1133115

5. Christ, A. and H. L. Hartnagel, "Three-dimensional finite difference method for the analysis of microwave device embedding," IEEE Trans. Microwave Theory and Techniques, Vol. 35, 688-696, 1987.
doi:10.1109/TMTT.1987.1133733

6. Katzier, H., "Streuverhalten elektromagnetischer eellen bei sprunghaften übergängen geschirmter dielektrischer leitungen," AEÜ, Vol. 38, 290-296, 1984.

7. Hsu, C.-I. G. and A. Auda Hesham, "Multiple dielectric post in a rectangular waveguide," IEEE Trans. Microwave Theory and Techniques, Vol. 34, 883-891, 1986.
doi:10.1109/TMTT.1986.1133461

8. Leviatan, Y. and G. S. Sheaffer, "Analysis of inductive dielectric posts in rectangular waveguide," IEEE Trans. Microwave Theory Techniques, Vol. 34, 883-891, 1986.
doi:10.1109/TMTT.1986.1133518

9. Ortega, D., R. M. De La Rue, et al. "Cutoff wavelength of periodically segmented waveguide in Ti:LiNbO3," J. Lightwave Technol., Vol. 16, No. 2, 284-290, 1998.
doi:10.1109/50.661022

10. Moreau, Y., P. Arguel, et al. "Direct printing of gratings on solgel layers," Optical Engineering, Vol. 37, No. 4, 1130-1135, 1998.
doi:10.1117/1.601946

11. Touam, T., M. A. Fardad, M. P. Andrews, and S. I. Najafi, "Solgel waveguides with Bragg grating," Optical Engineering, Vol. 37, No. 4, 1136-1142, 1998.
doi:10.1117/1.601947

12. Foresi, J. S., P. R. Villeneuve, et al. "Photonic-bandgap microcavities in optical waveguides," Nature, Vol. 390, 143-145, 1997.

13. Bienstman, P. and R. Baets, "Optical modelling of photonics crystals and VCSELs using eigenmode expansion and perfectly matched layers," Optical and Quantum Electronics, Vol. 33, 327-341, 2001.
doi:10.1023/A:1010882531238

14. Lohmeyer, M., "Mode expansion modeling of rectangular integrated optical microresonators," Optical and Quantum Electronics, Vol. 34, 541-557, 2002.

15. Gallagher, D. F. G. and T. P. Felici, "Eigenmode expansion methods for simulation of optical propagation in photonics --- pros and cons," Proc. Photonics West, 4987-4910, 2003.

16. Brooke, G. H. and M. M. Z. Kharadly, "Step discontinuities on dielectric waveguides," Electronics Letters, Vol. 12, 473-475, 1976.
doi:10.1049/el:19760359

17. Brooke, G. H. and M. M. Z. Kharadly, "Scattering by abrupt discontinuities on planar dielectric waveguides," IEEE Trans. Microwave Theory and Techniques, Vol. 30, 760-770, 1982.
doi:10.1109/TMTT.1982.1131134

18. Koshiba, M., K. Ooshi, et al. "Finite-element analysis of the discontinuities in a dielectric slab waveguide bounded by parallel plates ," Electronics Letters, Vol. 18, 33-34, 1982.
doi:10.1049/el:19820024

19. Koshiba, M. and M. Suzuki, "Boundary-element analysis of dielectric slab waveguide discontinuities," Applied Optics, Vol. 25, 828-829, 1986.
doi:10.1364/AO.25.000828

20. Weisshaar, A. and V. K. Tripathi, "Modal analysis of step discontinuities in graded-index dielectric slab waveguides," J. Lightwave Technol., Vol. 10, No. 2, 593-602, 1992.
doi:10.1109/50.136093

21. Schmidt, R. and P. Russer, "Modeling of cascade coplanar waveguide discontinuities by the mode-matching approach," IEEE Trans. Microwave Theory and Techniques, Vol. 43, No. 12, 2910-2917, 1995.
doi:10.1109/22.475655

22. Rodríguez, J., M. A. Solano, et al. "Characterization of discontinuities in dielectric waveguides using Schelkunoff's method: Application to tapers and transitions," Int. Journal of Electronics, Vol. 66, 807-820, 1989.
doi:10.1080/00207218908925435

23. Rodríguez, J., R. D. Crespo, et al. "Comments on: Verification of generalized telegraphists equations applied to dielectric waveguide problems," Applied Optics, Vol. 33, No. 3, 356-357, 1994.
doi:10.1364/AO.33.000356

24. Wexler, A., "Solution of waveguide discontinuities by modal analysis ," IEEE Trans. Microwave Theory and Techniques, Vol. 15, No. 9, 508-517.
doi:10.1109/TMTT.1967.1126521

25. James, G. L., "On the problem of applying mode-matching techniques in analyzing conical waveguide discontinuities," IEEE Trans. Microwave Theory and Techniques, Vol. 31, No. 9, 718-723, 1983.
doi:10.1109/TMTT.1983.1131580

26. Marcatili, E. A. J., "Dielectric rectangular waveguide and directional couplers for integrated optics," Bell System Technical Journal, Vol. 48, 2071-2102, 1969.

27. Knox, R. M. and P. P. Toulios, "Rectangular dielectric image lines for millimeter integrated circuits," 1970 Wescon Conference, 1970.

28. Knox, R. M. and P. P. Toulios, "Integrated circuits for the millimeter through optical frequency range," Symposium on Submillimeter Waves, 497-516, 1970.

29. Steinberg, R. A. and T. G. Giallorenzi, "Modal fields of anisotropic channel waveguides," J. Opt. Soc. Am., Vol. 67, No. 4, 523-533, 1977.
doi:10.1364/JOSA.67.000523

30. Solbach, K. and I. Wolff, "The electromagnetics fields and phase constants of dielectric image lines," IEEE Trans. Microwave Theory and Techniques, Vol. 26, 266-274, 1978.
doi:10.1109/TMTT.1978.1129363

31. Suhara, T., Y. Handa, et al. "Analysis of optical channel waveguides an directional couplers with graded-index profile," J. Opt. Soc. Am., Vol. 6, 807-815, 1979.
doi:10.1364/JOSA.69.000807

32. Strake, E., G. P. Bava, et al. "Guided modes of Ti:LiNbO3 channel waveguides: A novel quasi-analytical technique in comparison with the scalar finite-element method," J. Lightwave Technol., Vol. 6, No. 6, 1126-1135, 1988.
doi:10.1109/50.4105

33. Crespo, R. D., Coupled mode theory application for analyzing the electromagnetic propagation characteristics in optical waveguides with arbitrary index profile, Doctoral Thesis, University of Oviedo, Spain, 1997.

34. Rodríguez, J., O. Hidalgo, et al. "Photonic devices in waveguide periodical structures: Generalized analysis of multiple discontinuities," Optical Engineering, Vol. 41, No. 8, 1947-1956, 2002.
doi:10.1117/1.1486458

35. Rodríguez, J., O. Hidalgo, et al. "Photonic band gaps and photonic windows in cascaded optical waveguides: A complete analysis of the electromagnetic scattering properties ," Physica Status Solidi (C), Vol. 0, No. 5, 1408-1411, 2003.
doi:10.1002/pssc.200303215

36. Rodríguez, J., M. G. Granda, et al. "Planar waveguide photonic crystals as an alternative for refractive index optical sensors design: Theoretical evaluation ," Journal of Modern Optics, Vol. 56, No. 7, 927-935, 2009.
doi:10.1080/09500340902829577