Vol. 34
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-09-14
Metamaterial-Based Sensor Design Working in Infrared Frequency Range
By
Progress In Electromagnetics Research B, Vol. 34, 205-223, 2011
Abstract
In this paper, we propose the design of high sensitivity and selectivity metamaterial-based biosensors operating in the THz regime. The proposed sensors consist of planar array of resonant metallic structures, whose frequency response is modified through the variation of the surrounding dielectric environment. We consider different resonator geometries, such as the squared, circular, asymmetrical, and omega ones, and the analysis of the biosensors is conducted through proper equivalent quasi-static analytical circuit models. The metallic particles are assumed deposited on a glass substrate through proper titanium adhesion layers. Exploiting the proposed analytical model, which is verified through the comparison to full-wave numerical simulations, we study the biosensor resonance frequencies as a function of the geometric parameters of the individual inclusions. Finally, we optimize the structure in order to obtain high sensitivity and selectivity performances. The numerical results show that the proposed structures can be successfully applied as biosensors working in the THz region.
Citation
Luigi La Spada, Filiberto Bilotti, and Lucio Vegni, "Metamaterial-Based Sensor Design Working in Infrared Frequency Range," Progress In Electromagnetics Research B, Vol. 34, 205-223, 2011.
doi:10.2528/PIERB11060303
References

1. Vo-Dinh, T. and L. Allain, "Biosensors for medical applications," Biomedical Photonics Handbook, CRC Press, 2003.
doi:10.1201/9780203008997

2. Hu, M., J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, "Gold nanostructures: Engineering their plasmonic properties for biomedical applications," Chem. Soc. Rev., Vol. 35, 1084-1094, 2006.
doi:10.1039/b517615h

3. Salamon, Z., H. A. Macleod, and G. Tollin, "Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I. Theoretical principles," Biochim. Biophys. Acta, Vol. 1331, 117-129, 1997.

4. Lillie, J. J., M. A. Thomas, N. M. Jokerst, S. E. Ralph, K. A. Dennis, and C. L. Handerson, "Multimode interferometric sensors on silicon optimized for fully integrated complementary metal-oxide-semiconductor chemical-biological sensor systems," J. Opt. Soc. Am. B, Vol. 23, 642-651, 2006.
doi:10.1364/JOSAB.23.000642

5. Luo, D. H., R. A. Levy, Y. F. Hor, J. F. Federici, and R. M. Pafchek, "An integrated photonic sensor for in situ monitoring of hazardous organics," Sens. Actuators B, Vol. 92, 121-126, 2003.
doi:10.1016/S0925-4005(03)00123-0

6. Xia, F., L. Sekaric, and Y. A. Vlasov, "Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators," Opt. Expr., Vol. 14, 3872-3886, 2006.
doi:10.1364/OE.14.003872

7. Chao, C. Y. and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett., Vol. 83, 1527-1529, 2003.
doi:10.1063/1.1605261

8. Yalçin, A., K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Selim Unlu, and B. B. Goldberg, "Optical sensing of biomelecules using microring resonators," IEEE J. Selected Topics in Quantum Electronics, Vol. 12, 148-155, 2006.
doi:10.1109/JSTQE.2005.863003

9. Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.
doi:10.2528/PIER06071104

10. Ishimaru, A., S. Jaruwatanadilok, and Y. Kuga, "Generalized surface plasmon resonance sensors using metamaterials and negative index materials," Progress In Electromagnetics Research, Vol. 51, 139-152, 2005.
doi:10.2528/PIER04020603

11. Cai, M. and E. P. Li, "A novel terahertz sensing device comprising of a parabolic reflective surface and a bi-conical structure," Progress In Electromagnetics Research, Vol. 97, 61-73, 2009.
doi:10.2528/PIER09090902

12. Bilotti, F., A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Trans. Microw. Theory Tech., Vol. 55, 2865-2873, 2007.
doi:10.1109/TMTT.2007.909611

13. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas Propag., Vol. 55, 2258-2267, 2007.
doi:10.1109/TAP.2007.901950

14. Tretyakov, S. A., "On geometrical scaling of split-ring and double-bar resonators at optical frequencies," Metamaterials, Vol. 1, 140-143, 2007.
doi:10.1016/j.metmat.2007.02.004

15. Buoeno, M. A. and A. K. T. Assis, "A new method for inductance calculations," J. Phys. D: Appl. Phys., Vol. 28, 1802-1806, 1995.
doi:10.1088/0022-3727/28/9/007

16. Delgado, V., O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, "Analytical circuit model for split ring resonators in the far infrared and optical frequency range," Metamaterials, Vol. 3, 57-62, 2009.
doi:10.1016/j.metmat.2009.03.001

17. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, 2075-2081, 1999.
doi:10.1109/22.798002

18. Tretyakov, S. A., F. Mariotte, C. R. Simovski, T. G. Kharina, and J. P. Heliot, "Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data," IEEE Trans. Antennas Propag., Vol. 44, 1006-1014, 1996.
doi:10.1109/8.504309

19. Simovski, C. R., S. A. Tretyakov, A. A. Sochava, B. Sauviac, F. Mariotte, and T. G. Kharina, "Antenna model for conductive omega particles," Journal of Electromagnetic Waves and Applications, Vol. 11, No. 11, 1509-1530, 1997.
doi:10.1163/156939397X00567

20. Casse, B. D. F., H. O. Moser, O. Wilhelmi, and B. T. Saw, "Micro- and nano-fabrication of electromagnetic metamaterials for the terahertz range," Proceedings of the ICMAT 2005 Symposium, Vol. 18, No. 25, 2005.

21. CST Computer Simulation Technology, www.cst.com.

22. Chen, C.-Y., I.-W. Un, N.-H. Tai, and T.-J. Ye, "Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance," Opt. Expr., Vol. 17, 15372-15380, 2009.
doi:10.1364/OE.17.015372