Vol. 31
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-05-24
Optical Performances of Lensless Sub-2micron Pixel for Application in Image Sensors
By
Progress In Electromagnetics Research B, Vol. 31, 1-14, 2011
Abstract
In this paper we will report on the optical performances of submicron planar lensless pixels arranged in the 2 x 2 Bayer cell configuration, the basic element of CMOS colour image sensors. The 2D microlens array placed in front of each pixel in commercial devices has been replaced by a 2D array of submicron holes realised on a thin metal film. Each pixel has been designed to present a lightpipe inside its structure acting as an optical waveguide that confines the light up to photodiode surface. This pixel design is fully compatible with large scale industry production since its fabrication involves only standard lithographic and etching procedures. Simulations of the light propagation inside the lensless pixel has been performed by using full 3D electromagnetic analysis. In this way it was possible to determine the optical performances of the Bayer cell in terms of the normalized optical efficiency and crosstalk effects between adjacent pixels that result to be up to 30% and a factor 10, respectively, better than those ones obtained for the microlens counterpart. The significant increase of the achievable values of the normalized optical efficiency and crosstalk can foresee the possibility to reduce the pixel size down to 1 μm, i.e., beyond the limit imposed by the diffraction effects arising in microlens equipped pixel.
Citation
Rino Marinelli, and Elia Palange, "Optical Performances of Lensless Sub-2micron Pixel for Application in Image Sensors," Progress In Electromagnetics Research B, Vol. 31, 1-14, 2011.
doi:10.2528/PIERB11032306
References

1. Huo, Y., C. C. Fesenmaier, and P. B. Catrysse, "Microlens performance limits in sub-2μm pixel CMOS image sensors," Optics Express, Vol. 18, No. 6, 5861-5872, 2010.
doi:10.1364/OE.18.005861

2. Hsu, T. H., Y. K. Fang, D. N. Yaung, S. G. Wuu, H. C. Chien, C. S. Wang, J. S. Lin, C. H. Tseng, S. F. Chen, C. S. Lin, and C. Y. Lin , "Dramatic reduction of optical crosstalk in deep-submicrometer CMOS imager with air gap guard ring," IEEE Electron Dev. Lett., Vol. 25, No. 6, 375-377, 2004.
doi:10.1109/LED.2004.828995

3. Swain, P. K. and D. Cheskis, "Back-illuminated image sensors come to the forefront," Photonics Spectra, Issue August, 2008.

4. Dragoi, V., A. Filbert, S. Zhu, and G. Mittendorfer, "CMOS wafer bonding for back-side illuminated image sensors fabrication," 11th International Conference on Electronic Packaging Technology & High Density Packaging, 27-30, August 2010.
doi:10.1109/ICEPT.2010.5582379

5. Lezec, H. J., A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science, Vol. 297, 820-822, 2002.
doi:10.1126/science.1071895

6. Verslegers, L., P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, "Planar lenses based on nanoscale slit arrays in a metallic film," Nanoletters, Vol. 9, No. 1, 235-238, 2009.

7. Shi, H., C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, "Beam manipulating by metallic nano-slits with variant witdths," Optics Express, Vol. 13, No. 18, 6815-6820, 2005.
doi:10.1364/OPEX.13.006815

8. Ma, C. and Z. Liu, "A super resolution metalens with phase compensation mechanism," Appl. Phys. Lett., Vol. 96-1833103, 2010.
doi:10.1063/1.3427199

9. Gambino, J., B. Leidy, J. Adkisson, M. Jaffe, R. J. Rassel, J. Wynne, J. Ellis-Monaghan, T. Hoague, D. Meatyard, S. Mongeon, and T. Kryzak, "CMOS Imager with copper wiring and lightpipe," International Electron Device Meeting, IEDM'06, Technical Digest, San Francisco, USA, December 2006.

10. Fesenmaier, C. C., Y. Huo, and P. B. Catrysse, "Optical confinement methods for continued scaling of CMOS image sensor pixels," Optics Express, Vol. 16, No. 25, 20457-20470, 2008.
doi:10.1364/OE.16.020457

11. Weiland, T., "A discretization method for the solution of Maxwell's equations for six component fields," Electron. Commun., Vol. 31, 116, 1977.

12. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique ," Progress In Electromagnetics Research, Vol. 32, 65-87, 2001.
doi:10.2528/PIER00080103

13. Weiland, T., "Time domain electromagnetic field computation with finite difference methods ," Int. J. Numer. Model., Vol. 9, No. 4, 295-319, 1996.
doi:10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8

14. Palik, E. D., Handbook of Optical Constants of Solids, Academic Press, 1998.

15. Vial, A. and T. Laroche, "Comparison of gold and silver dispersion law suitable for FDTD simulations," Applied Physics B, Vol. 93, No. 1, 139-143, 2008.
doi:10.1007/s00340-008-3202-4

16. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, 667-669, February 1998.
doi:10.1038/35570

17. Ghazi, G. and M. Shahabadi, "Modal analysis of extraordinary transmission through an array of subwavelength slits," Progress In Electromagnetics Research, Vol. 79, 59-74, 2008.
doi:10.2528/PIER07092402

18. Nakamura, J., Image Sensors and Signal Processing for Digital Still Cameras, Chapter 5, Taylor and Francis Group, Boca Raton, USA , 2006.

19. Agranov, G., V. Berezin, and R. H. Tsai, "Crosstalk and microlens study in a color CMOS image sensor," IEEE Trans. Electron Dev., Vol. 50, No. 1, 4-11, January 2003.
doi:10.1109/TED.2002.806473

20. Onozawa, K., K. Toshikiyo, T. Yogo, M. Ishii, K. Yamanaka, T. Matsuno, and D. Ueda , "A MOS image sensor with a digital-microlens," IEEE Trans. Electron Dev., Vol. 55, No. 4, 986-991, April 2008.
doi:10.1109/TED.2008.917331