Vol. 29
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-03-30
Epsimu, a Tool for Dielectric Properties Measurement of Porous Media: Application in Wet Granular Materials Characterization
By
Progress In Electromagnetics Research B, Vol. 29, 191-207, 2011
Abstract
The principal aim of this article is the presentation of EpsiMu, a tool for dielectric properties measurement. This general tool can be used to characterize all types of materials, but in this article we apply it to porous or granular materials. The tool consists of a coaxial cell and dedicated software that allow us to reconstruct the permittivity in almost real-time by a de-embedding process. Dielectric permittivity of soils sample was measured using this microwave tool. So, we can then determine the relationship between the dielectric properties and volumetric water content θ of Fontainebleau sand (center of France) and Dune of Pilat sand (Arcachon Bay area, France). The clay effect on Fontainebleau sand is also studied. We discuss the usefulness of several models that link the permittivity to volumetric water content of soil. It is shown that the soil permittivity model is not directly applicable to Fontainebleau sand and Dune of Pilat sand. We find a good match between our results representing the relative permittivity ε'r veversus the volumetric water content θ and the Complex Refractive Index model (CRIM) between 600 MHz and 1 GHz. Alternative regression formulae are proposed. The implication of the determination of volumetric water content, θ, is discussed. A linear relation between the dielectric loss tangent and volumetric water content θ of soils is established.
Citation
Pierre Sabouroux, and Doudou Ba, "Epsimu, a Tool for Dielectric Properties Measurement of Porous Media: Application in Wet Granular Materials Characterization," Progress In Electromagnetics Research B, Vol. 29, 191-207, 2011.
doi:10.2528/PIERB10112209
References

1. Behari, J., Microwave Dielectric Behavior of Wet Soils, Vol. 8, Springer, 2005.
doi:10.1016/0022-1694(95)02970-2

2. Njoku, E. G. and D. Entekhabi, "Passive microwave remote sensing of soil moisture," Journal of Hydrology, Vol. 184, 101-129, 1996.
doi:10.1109/TGRS.1982.350412

3. Njoku, E. G. and P. E. O'Neill, "Multifrequency microwave radiometer measurements of soil moisture," IEEE Transactions on Geoscience and Remote Sensing, Vol. GE-20, No. 4, 468-475, 1982.
doi:10.1109/TGRS.1982.350412

4. Daniels, D. J., Ground Pentrating Radar, 2nd Ed., IEE Radar, Sonar and Navigation, Series, 2004.
doi:10.1016/S0022-1694(96)03244-1

5. Van Overmeeran, R. A., J. C. Gehrels, and S. V. Sariowa, "Ground penetrating radar for determining volumetric soil water content: Results of comparative measurements at two test sites," J. Hydrol., Vol. 197, 316-338, 1997.
doi:10.1029/WR016i003p00574

6. Topp, G. C., J. L. Davis, and A. P. Annan, "Electromagnetic determination of soil water content: Measurements in coaxial transmission lines," Water Resources Research, Vol. 16, No. 3, 574-582, 1980.
doi:10.1109/36.387598

7. Peplinski, N. R., F. T. Ulaby, and M. C. Dobson, "Dielectric properties of soils in the 0.3--1.3 GHz range," IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 3, 803-807, 1995.
doi:10.1109/TGRS.1980.350304

8. Wang, J. R. and T. J. Schmugge, "An empirical model for the complex permittivity of soil as a function of water content," IEEE Transactions on Geoscience and Remote Sensing, Vol. GE-18, 288-295, 1980.
doi:10.1109/36.582002

9. Sabburg, J., J. A. R. Ball, and N. H. Hancock, "Dielectric behavior of moist swelling clay soils at microwave frequencies," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 3, 784-787, 1997.
doi:10.1029/98WR02038

10. Sakaki, T., K. Sugihara, T. Adachi, K. Nishida, and W. Lin, "Application of time domain reflectometry to determinations of volumetric water content in rock," Water Resources Research, Vol. 34, No. 10, 2631-2632, 1998.
doi:10.1029/2001WR000923

11. West, L. J., K. Handley, Y. Huang, and M. Pokar, "Radar frequency dispersion in sandstone: Implication for determination of moisture and clay content," Water Resources Research, Vol. 39, 1026, 2003.
doi:10.1080/02626660109492834

12. Persson, R., M. Berndtsson, and B. Sivakumar, "Using neural networks for calibration of time domain reflectometry measurements," Hydrological Sciences Journal, Vol. 46, No. 3, 389-398, 2001.
doi:10.1080/02626660109492834

13. Ba, D. and P. Sabouroux, "EpsiMu a tool for permittivity and permeability measurement in microwave domain at real time of all materials, application to solid and semi-solid materials," Microwave and Optical Technology Letters, Vol. 52, No. 12, 2643-2648, 2010.
doi:10.1111/j.1365-2389.1996.tb01410.x

14. Perdok, U. D., B. Kroesbergen, and M. A. Hilhorst, "Influence of gravimetric water content and bulk density on the dielectric properties of soil," European Journal of Soil Science, Vol. 47, 367-371, 1996.
doi:10.1111/j.1365-2389.1996.tb01410.x

15. Guéguen, Y. and V. Palciauskas, Introduction to the Physics of Rocks, Princeton University Press, 1994.
doi:10.1088/0022-3727/31/13/013

16. Zakri, T., J. P. Laurent, and M. Vauclin, "Theoritical evidence for `Lichtenecker's mixture formulae,' based on effective medium theory ," Journal of Physics D: Applied Physics, Vol. 31, 1589-1594, 1998.
doi:10.1111/j.1365-2478.2008.00724.x

17. Brovelli, A. and G. Cassiani, "Effective permittivity of porous media: A critical analysis of the complex refractive index model," Geophysical Prospecting, Vol. 56, 715-727, 2008.
doi:10.1109/PROC.1974.9388

18. Birchak, J. R., C. G. Gardner, J. E. Hipp, and J. M. Victor, "High dielectric constant microwave probes for sensing soil moisture," Proceeding of the IEEE, Vol. 62, 93-98, 1974.
doi:10.1109/PROC.1974.9388

19. Roth, K., R. Schulin, H. Fluher, and W. Attinger, "Calibration of time-domain reflectometry for water content measurement using a composite dielectric approach," Water Resources Research, Vol. 26, No. 10, 2267-2273, 1990.

20. HalliKainen, M. T., F. T. Ulaby, M. C. Dobson, M. A. ElRayes, and L. Wu, "Microwave dielectric behaviour of wet soil Part 1: Empirical models and experimental observations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 1, 218-222, 1985.

21. Agilent, , Agilent de-embedding and embedding S-parameter networks using a vector network analyzer, Technical Report, Agilent Technologies, 2000.

22. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic materials by time domain techniques," IEEE Transactions on Microwave Theory and Techniques, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/PROC.1974.9382

23. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proceeding of the IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/22.57336

24. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method ," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 8, 1096-1103, 1990.
doi:10.1109/TMTT.2003.810139

25. Williams, T. C., M. A. Stuchly, and P. Saville, "Modified transmission-reflection method for measuring constitutive parameters of thin flexible high-loss materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 5, 1560-1566, 2003.
doi:10.1109/19.744310

26. Trabelsi, S., A. Krazewski, and S. O. Nelson, "New density-independent calibration function for microwave sensing of moisture content in particulate materials," IEEE Transactions on Instrumentation and Measurement, Vol. 47, 613-622, 1998.
doi:10.1109/19.744310

27. Nelson, S. O., "Density-permittivity relationships for powdered and granular materials," IEEE Transactions on Instrumentation and Measurement, 2005.

28. Kupfer, K., Electromagnetic Aquametry, Springer, 2004.
doi:10.1016/S0926-9851(98)00017-2

29. Sarrenketo, T., "Electrical properties of water in clay and silty soils," Journal of Applied Geophysics, Vol. 40, 73-88, 1998.
doi:10.1109/36.142943

30. Scott, W. R. and G. S. Smith, "Measured electrical constituve parameters of soil as functions of frequency and moisture content," IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 3, 621-623, 1992.
doi:10.1109/36.142943