Vol. 27
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-12-15
Design of 35 GHz Gyrotron for Material Processing Applications
By
Progress In Electromagnetics Research B, Vol. 27, 273-288, 2011
Abstract
The complete design of 35 GHz, 200 kW gyrotron for various material processing and heating applications is presented in this article. The components of the device, such as Magnetron Injection Gun, interaction cavity, collector and RF window, are designed for the TE03 mode. Various in-house developed codes (GCOMS, MIGSYN and MIGANS) and commercially available codes (MAGIC, EGUN and CST-MS) are used for the design purpose. A thorough sensitivity analysis of the gyrotron components are also carried out. The designed device shows the capability to generate more than 200 kW of output power with more than 40% of efficiency.
Citation
Nitin Kumar, Udaybir Singh, Anil Kumar, Hasina Khatun, T. P. Singh, and Ashok Kumar Sinha, "Design of 35 GHz Gyrotron for Material Processing Applications," Progress In Electromagnetics Research B, Vol. 27, 273-288, 2011.
doi:10.2528/PIERB10110206
References

1. Thumm, M., "State-of-the-art of high power gyro-devices and free electron masers update 2004,", FZK, KIT, Germany.

2. Thumm, M., "Progress in gyrotron development," Fusion Engineering and Design, Vol. 66-68, 69-90, 2003.

3. Flyagin, V. A., A. V. Gaponov, I. Petelin, and V. K. Yulpatov, "The gyrotron," IEEE Trans. Microwave Theory. Tech., Vol. 25, 514-521, 1977.

4. Thumm, M., "MW gyrotron development for fusion plasma applications," Plasma Physics and Controlled Fusion, Vol. 45, A143, 2003.

5. Thumm, M., "Novel applications of millimeter and submillimeter wave gyro-devices," Int. J. of Infrared, Millimeter and Terahertz Wave, Vol. 22, 377-386, 2001.

6. Gold, S. H. and G. S. Nusinovich, "Review of high-power microwave source research," Rev. Sci. Instrum, Vol. 68, 3945-3974, 1997.

7. Hirotaa, M., M. C. Valecillosb, M. E. Britoc, K. Hiraob, and M. Toriyamad, "Grain growth in millimeter wave sintered silicon nitride ceramics," Journal of the European Ceramic Society, Vol. 24, 3337-3343, 2004.

8. Bykov, Y. V., A. G. Eremeev, V. V. Holoptsev, K. I. Rybakov, and V. E. Semenov, "High temperature processing of materials using millimeter-wave radiation," Proc. MSMW Symposium, Kharkov, Ukraine, 1998.

9. Felich, K. L., et al., "Characteristics and applications of fast-wave gyro-devices," Proceeding of the IEEE, Vol. 87, 752, 1999.

10. Miyake, S., "Millimeter-wave materials processing in Japan by high-power gyrotron," IEEE Trans. Plasma Sci., Vol. 31, 1010-1015, 2003.

11. Toshiyuki, Y. M., T. Matsumoto, and S. Miyake, "Fabrication of bulk ceramics by high power millimeter wave radiation," Japanese J. Applied Physics, Vol. 40, 1080-1082, 2001.

12. Liu, P.-K., E. Borie, and M. V. Kartikeyan, "Design of a 24 GHz, 25-50kW Technology gyrotron operating at the second harmonic," Int. J. Infrared Milli. Waves, Vol. 21, 1917-1943, 2000.

13. Bykov, Y., G. Denisov, A. G. Eremeev, M. Glyavin, V. V. Holoptsev, I. V. Plotnikov, and V. Pavlov, "3.5kW 24 GHz compact gyrotron system for microwave processing of materials," Advances in Microwave and Radio Frequency Processing, Part 1, 24-30, 2006.

14. Liebe, H. J., "MPM --- an atmospheric millimetre-wave propagation model," Int. J. Infrared Milli. Waves, Vol. 10, 631-650, 1989.

15. Gaponov-Grekhov, A. V. and V. L. Granatstein, Application of High Power Microwaves, Artech House Publication, London, 1994.

16. Fliflet, A. W., et al., "Sintering of ceramic compacts in a 35 GHz gyrotron-powered furnace," Proc. IEEE Int. Conf. on Plasma Science, 159-160, San Diago, USA, 1997.

17. Fliflet, A. W., et al., "Pulsed 35 GHz gyrotron with overmoded applicator for sintering ceramic compacts," Proc. IEEE Int. Conf. on Plasma Science, 105-106, Boston, USA, 1996.

18. Barroso, J. J., A. Montes, G. O. Ludwig, and R. A. Correa, "Design of a 35 GHz gyrotron," Int. J. Infrared Milli. Waves, Vol. 11, 251-274, 1990.

19. Edgcombe, C. J., Ed., Gyrotron Oscillators: Their Principles and Practice, Taylor & Francis, London, 1993.

20. Gantenbein, G., E. Borie, O. Dumbrajs, and M. Thumm, "Design of a high order volume mode cavity for a 1 MW/140 GHz gyrotron,", Vol. 78, 771-787, 1995.

21. Jain, R. and M. V. Kartikeyan, "Design of a 60 GHz, 100kW CW gyrotron for plasma diagnostics: GDS-V.01 simulations," Progress In Electromagnetics Research B, Vol. 22, 379-399, 2010.

22. MAGIC User Manual: 2007 version of Magic 3D, ATK Mission Research, Washington.

23. Singh, U., A. Bera, R. R. Rao, and A. K. Sinha, "Synthesized parameters of MIG for 200 kW, 42 GHz gyrotron," Int. J. Infrared Milli. Waves, Vol. 31, 533-541, 2010.

24. Baird, J. M. and W. Lawson, "Magnetron injection gun (MIG) design for gyrotron applications," Int. J. Electronics, Vol. 61, 953-967, 1986.

25. Lawson, W., "MIG scaling," IEEE Trans. Plasma Sci., Vol. 16, 290-295, 1988.

26. Hermannsfeldt, W. B., EGUN, Stanford University Report SLAC-226, Stanford Linear Accelerator Center, 1979.

27. Singh, U., N. Kumar, N. Kumar, S. Tandon, H. Khatun, L. P. Purohit, and A. K. Sinha, "Numerical simulation of magnetron injection gun for 1MW 120 GHz gyrotron," Progress In Electromagnetics Research Letters, Vol. 16, 21-34, 2010.

28. Kumar, N., M. K. Alaria, U. Singh, A. Bera, T. P. Singh, and A. K. Sinha, "Design of beam tunnel for 42 GHz, 200kW gyrotron," Int. J. Infrared Milli. Waves, Vol. 31, 601-607, 2010.

29. Gantenbein, G., et al., "Experimental investigations and analysis of parasitic RF oscillations in high power gyrotorns," IEEE Trans. Plasma Sci., Vol. 38, 1168-1177, 2010.

30. Nguyen, K., B. Danly, B. Levush, and M. Blank, "Electron gun and collector design for 94-GHz gyro amplifiers," IEEE Trans. Plasma Sci., Vol. 26, 799-813, 1998.

31. Poonia, S., S. Tandon, U. Singh, and A. K. Sinha, "Design studies of collector for 42 GHz gyrotron," National Confrence on Microwave, Antennas, Propagation and Remote Sensing, Bhilwara, India, Dec. 19-21, 2008.

32. Thumm, M., "Development of output power window for high power long pulse gyrotrons and EC wave applications," Int. J. Infrared Milli. Waves, Vol. 19, 3-14, 1998.

33. Heidinger, R., G. Dammertz, A. Meier, and M. Thumm, "CVD diamond windows studied with low and high power millimeter waves," IEEE Trans. Plasma Sci., Vol. 30, 800-807, 2002.

34. CST-Microwave Studio, , User Manual: 2006 Version, Darmstadt, Germany.