Vol. 27
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-11-09
Transient Adjoint Sensitivities for Discontinuities with Gaussian Material Distributions
By
Progress In Electromagnetics Research B, Vol. 27, 1-19, 2011
Abstract
We present a novel approach for adjoint transient sensitivity analysis with respect to discontinuities with space-dependent materials exhibiting known distribution. Our approach integrates the Time Domain Transmission-Line-Modeling (TD-TLM) with the Adjoint Variable Method (AVM). Using only one extra TD-TLM simulation, the sensitivities of the observed response with respect to all the parameters of the Gaussian distribution are obtained. The accuracy of our sensitivity analysis approach is illustrated through a number of different 2D and 3D examples. Using the previous sensitivities, gradient-based optimization technique is applied to exploit in the location and profile of various inhomogeneous material Gaussian distribution for inverse problems. This method can be repeated for any continuous or discontinuous distributions that exist in electromagnetic imaging for space dependent materials like cancer detection.
Citation
Ahmed Gomaa Radwan, Mohamed H. Bakr, and Natalia K. Nikolova, "Transient Adjoint Sensitivities for Discontinuities with Gaussian Material Distributions," Progress In Electromagnetics Research B, Vol. 27, 1-19, 2011.
doi:10.2528/PIERB10090404
References

1. Feehery, W. F., J. E. Tolsma, and P. I. Barton, "Efficiently sensitivity analysis of large-scale differential-algebraic systems," Applied Numerical Mathematics, Vol. 25, 41-54, 1997.
doi:10.1016/S0168-9274(97)00050-0        Google Scholar

2. Cao, Y., S. Li, L. Petzold, and R. Serban, "Adjoint sensitivity analysis for differential-algebraic equations: The adjoint DAE system and its numerical solution," SIAM J. Sci. Comput., Vol. 24, 1076-1089, 2003.
doi:10.1137/S1064827501380630        Google Scholar

3. Li, S. and L. Petzold, "Adjoint sensitivity analysis for time-dependent partial differential equations with adaptive mesh refinement," Journal of Computational Physics, Vol. 198, 310-325, 2004.
doi:10.1016/j.jcp.2003.01.001        Google Scholar

4. Ding, J.-Y., Z.-K. Pan, and L.-Q. Chen, "Second order adjoint sensitivity analysis of multibody systems described by differential-algebraic equations," Multibody Syst. Dyn., Vol. 18, 599-617, 2007.
doi:10.1007/s11044-007-9080-4        Google Scholar

5. Errico, R. M., "What is an adjoint model?," Bulletin of the American Meteorological Society, Vol. 78, 2577-2591, 1997.
doi:10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2        Google Scholar

6. Vallese, L. M., "Incremental versus adjoint models for network sensitivity analysis," IEEE Trans. Circuits & Systems, Vol. 21, No. 1, 46-49, 1974.
doi:10.1109/TCS.1974.1083804        Google Scholar

7. Lee, H., "Adjoint variable method for structural design sensitivity analysis of a distinct eigenvalue problem," KSME International Journal, Vol. 13, No. 6, 470-476, 1999.        Google Scholar

8. Chung, Y.-S., J. Ryu, C. Cheon, I. H. Park, and S.-Y. Hahn, "Optimal design method for microwave devices using time domain method and design sensitivity analysis --- Part I: FETD case," IEEE Trans. on Magnetics, Vol. 37, No. 5, 3289-3293, Sep. 2001.
doi:10.1109/20.952597        Google Scholar

9. Webb, J. P., "Design sensitivity of frequency response in 3D finite-element analysis of microwave devices," IEEE Trans. Magnetics, Vol. 38, 1109-1112, 2002.
doi:10.1109/20.996284        Google Scholar

10. Basl, P. A. W., M. H. Bakr, and N. K. Nikolova, "The theory of self-adjoint S-parameter sensitivities for lossless nonhomogeneous TLM problems," IET Microw. Antennas Propagation, Vol. 2, No. 3, 211-220, 2008.
doi:10.1049/iet-map:20070125        Google Scholar

11. Drogoudis, D. G., G. A. Kyriacou, and J. N. Sahalos, "Microwave tomography employing an adjoint network based sensitivity matrix," Progress In Electromagnetics Research, Vol. 94, 213-242, 2009.
doi:10.2528/PIER09060808        Google Scholar

12. Chung, Y. S., C. Cheon, I. H. Park, and S. Y. Hahn, "Optimal design method for microwave device using time domain method and design sensitivity analysis --- Part II: FDTD case," IEEE Trans. Magn., Vol. 37, 3255-3259, Sep. 2001.
doi:10.1109/20.952589        Google Scholar

13. Bakr, M. H. and N. K. Nikolovac, "An adjoint method for time domain transmission-line-modeling with fixed structured grids," IEEE Trans. Microwave Theory Tech., Vol. 52, 554-559, Feb. 2004.
doi:10.1109/TMTT.2003.821908        Google Scholar

14. Bakr, M. H. and N. K. Nikolova, "An adjoint variable method for time domain TLM with wide-band John matrix boundaries," IEEE Trans. Microwave Theory Tech., Vol. 52, 678-685, 2004.
doi:10.1109/TMTT.2003.822034        Google Scholar

15. Nikolova, N. K., H. W. Tam, and M. H. Bakr, "Sensitivity analysis with the FDTD method on structured grids," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 4, 1207-1216, Apr. 2004.
doi:10.1109/TMTT.2004.825710        Google Scholar

16. Nikolova, N. K., Y. Li, and M. H. Bakr, "Sensitivity analysis of scattering parameters with electromagnetic time-domain simulators," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 4, 1598-1610, Apr. 2006.
doi:10.1109/TMTT.2006.871350        Google Scholar

17. Song, Y., Y. Li, N. K. Nikolova, and M. H. Bakr, "Self-adjoint sensitivity analysis of lossy dielectric structures with electromagnetic time domain simulators," Int. J. Numer. Model., Vol. 21, 117-132, Oct. 2007.        Google Scholar

18. Bakr, M. H., P. Zhao, and N. K. Nikolova, "Adjoint first order sensitivities of time domain responses and their applications in solution of inverse problems," IEEE Trans. Antennas Propagat., Jul. 2009.        Google Scholar

19. Ozyurt, B. D. and P. I. Barton, "Large-scale dynamic optimization using the directional second-order adjoint method," Ind. Eng. Chem. Res., Vol. 44, 1804-1811, 2005.
doi:10.1021/ie0494061        Google Scholar

20. Georgieva, N. K., S. Glavic, M. H. Bakr, and J. W. Bandler, "Feasible adjoint sensitivity technique for EM design optimization," IEEE Trans. Microwave Theory Tech., Vol. 50, 2751-2758, Dec. 2002.
doi:10.1109/TMTT.2002.805131        Google Scholar

21. Nikolova, N. K., R. Safian, E. A Soliman, and M. H. Bakr, "Accelerated gradient based optimization using adjoint sensitivities," IEEE Trans. Antennas Propagat., Vol. 52, 2147-2157, Aug. 2004.
doi:10.1109/TAP.2004.832313        Google Scholar

22. Goharian, M., M. Soleimani, and G. R. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003        Google Scholar

23. Mojabi, M. and J. LoVetri, "Adapting the normalized cumulative periodogram parameter-choice method to the Tikhonov regularization of 2-D/TM electromagnetic inverse scattering using Born iterative method," Progress In Electromagnetics Research, Vol. 1, 111-138, 2008.        Google Scholar

24. Yu, C., M. Yuan, and Q. H. Liu, "Reconstruction of 3D objects from multi-frequency experimental data with a fast DBIM-BCGS method," Inverse Problems, 25, doi:10.1088/0266-5611/25/2/024007, 2009.        Google Scholar

25. Bindu, G., A. Lonappan, V. Thomas, C. K. Aanandan, K. T. Mathew, and S. J. Abraham, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802        Google Scholar

26. Johns, P. B. and R. L. Beurle, "Numerical modeling of 2-dimensional scattering problems using a transmission line matrix," Proceedings of IEE, Vol. 118, No. 9, 1203-1208, Sep. 1971.        Google Scholar

27. Christopoulos, C., The Transmission-line-method TLM, IEEE Press, 1995.

28. Matlab, Version 7.0.1, , 2004.        Google Scholar