Vol. 24
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-08-06
A New Structure of Mmi Polymer Thermo-Optic Switch with a High Refractive Index Contrast
By
Progress In Electromagnetics Research B, Vol. 24, 103-120, 2010
Abstract
The 2×2 MMI polymer thermo-optic switch in a high refractive index contrast (0.102) with a new structure design is realized. This device was fabricated using standard fabrication techniques such as coating, photolithography, and dry etching. A crosstalk level of -36.2 dB has been achieved. Meanwhile the extinction ratio of 36.1 dB has been achieved in this device. The polarization dependent loss (PDL) of 0.3 dB and Insertion loss of 1.4 dB were measured at 1550 nm wavelength. In terms of wavelength dependency, the device shows a good performance within C-band wavelength with vacillation of the insertion loss value around 0.88 dB. The power consumption of 1.85 mW was measured to change the state of the switch from the cross to bar state. The measured switching time was 0.7 ms.
Citation
Abdulaziz Mohammed Al-Hetar, Abu Bakar Mohammad, Abu Sahmah M. Supa'at, Zaid Ahmed Shamsan, and Ian Yulianti, "A New Structure of Mmi Polymer Thermo-Optic Switch with a High Refractive Index Contrast," Progress In Electromagnetics Research B, Vol. 24, 103-120, 2010.
doi:10.2528/PIERB10062202
References

1. Duthie, P. J., N. Shaw, M. Wale, and I. Bennion, "Guided wave switch array using electro-optic and carrier depletion effect in Indium Phosphide," Electronics Letters, Vol. 27, No. 19, 1747-1748, 1991.
doi:10.1049/el:19911086

2. Sneh, A., J. E. Zucker, and B. I. Miller, "Compact low-crosstalk and low propagation loss quantum well Y-branch switches," IEEE Photonics Technology Letters, Vol. 8, No. 12, 1644-1646, 1996.
doi:10.1109/68.544705

3. Silberberg, Y., P. Perlmutter, and J. E. Baron, "Digital optical switch," Applied Physics Letters, Vol. 51, No. 16, 1230-1232, 1987.
doi:10.1063/1.98739

4. Ehsan, A. A., S. Shaari, and M. K. Abd-Rahman, "1×2 Y-branch plastic optical fiber waveguide coupler for optical accesscard system," Progress In Electromagnetics Research, Vol. 91, 85-100, 2009.
doi:10.2528/PIER09012903

5. Nagai, S., G. Morishima, H. Inayoshi, and K. Utaka, "Multimode interference photonic switches (MIPS)," Journal of Lightwave Technology, Vol. 20, No. 4, 675-680, 2002.
doi:10.1109/50.996588

6. Agashe, S. S., K. Shiu, and S. R. Forrest, "Compact polarization-insensitive InGaAsP-InP 2×2 optical switch," IEEE Photonics Technology Letters, Vol. 17, No. 1, 52-54, 2005.
doi:10.1109/LPT.2004.838286

7. Shi, Y. and D. Dai, "Design of compact multimode interference coupler based on deeply-etched SiO2 ridge waveguides," Optics Communications, Vol. 271, No. 2, 404-407, 2007.
doi:10.1016/j.optcom.2006.10.084

8. Heaton, J. M., R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birheck, and K. P. Hilton, "Novel 1-to-N way integrated optical beam splitters using symmetric mode mixing in GaAs/AlGaAs multimode waveguides," Applied Physics Letters, Vol. 61, No. 15, 1754-1756, 1992.
doi:10.1063/1.108495

9. Besse, P. A., M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, "Optical bandwidth and fabrication tolerances of multimode interference couplers," Journal of Lightwave Technology, Vol. 12, No. 6, 1004-1009, 1994.
doi:10.1109/50.296191

10. Soldano, L. B. and E. C. M. Pennings, "Optical multimode interference devices based on self-imaging: Principles and applications," Journal of Lightwave Technology, Vol. 13, No. 4, 615-627, 1995.
doi:10.1109/50.372474

11. Jenkins, R. M., J. M. Heaton, D. R. Wight, J. R. Parker, J. C. Birbeck, G. W. Smith, and K. P. Hilton, "Novel 1 × N and N × N integrated optical switches using self-imaging multimode GaAs/AIGaAs waveguides," Applied Physics Letters, Vol. 64, No. 6, 684-686, 1994.
doi:10.1063/1.111033

12. Diemeer, M. B. J., "Polymer thermo-optic space switches for optical communications," Optical Materials, Vol. 9, 192-200, 1998.
doi:10.1016/S0925-3467(97)00081-5

13. Leuthold, J. and C. H. Joyner, "Multimode interference couplers with tunable power splitting ratios," Journal of Lightwave Technology, Vol. 19, No. 5, 700-707, 2001.
doi:10.1109/50.923483

14. Al-hetar, A. M., I. Yulianti, A. S. M. Supa'at, and A. B. Mohammad, "Thermo-optic multimode interference switches with air and silicon trenches," Optics Communications, Vol. 21, 4653-4657, 2008.
doi:10.1016/j.optcom.2008.06.025

15. Al-hetar, A. M., A. S. M. Supa'at, A. B. Mohammad, and I. Yulianti, "Crosstalk improvement of a thermo-optic polymer waveguide MZI-MMI switch," Optics Communications, Vol. 281, 5764-5767, 2008.
doi:10.1016/j.optcom.2008.08.041

16. Fujisawa, T. and M. Koshiba, "Theoretical investigation of ultrasmall polarization-insensitive 1 × 2 multimode interference waveguides based on sandwiched structures," IEEE Photonics Technology Letters, Vol. 18, No. 11, 1246-1248, 2006.
doi:10.1109/LPT.2006.875058

17. Kalyanasundaram, N. and P. Muthuchidambaranathan, "Nonlinear pulse propagation in a weakly birefringent optical fiber Part 1: Derivation of coupled nonlinear schrodinger equations (cnlse)," Progress In Electromagnetics Research B, Vol. 19, 205-231, 2010.
doi:10.2528/PIERB09110602

18. Manning, R. J., A. Antonopoulos, R. L. Roux, and A. E. Kelly, "Experimental measurement of nonlinear polarisation rotation in semiconductor optical amplifiers," Electronics Letters, Vol. 37, No. 4, 229-230, 2001.
doi:10.1049/el:20010143

19. Kawachi, M., "Silica waveguides on silicon and their application to integrated-optic components," Optical and Quantum Electron, Vol. 22, No. 5, 391-416, 1990.
doi:10.1007/BF02113964

20. Lai, Q., W. Hunziker, and H. Melchior, "Low-power compact 2 × 2 thermooptic silica on- silicon waveguide switch with fast response," IEEE Photonics Technology Letters, Vol. 10, No. 5, 681-683, 1998.
doi:10.1109/68.669248

21. Supa'at, A. S. M., M. H. Ibrahim, A. B. Mohammad, N. M. Kassim, and E. Ghazali, "A novel thermooptic polymer switch based on directional coupler structure," American Journal of Applied Sciences, Vol. 5, No. 11, 1552-1557, 2008.
doi:10.3844/ajassp.2008.1552.1557

22. Al-Hetar, A. M., A. S. M. Supa'at, and A. B. Mohammad, "A ridge waveguide for thermo-optic application," Progress In Electromagnetics Research Letters, Vol. 6, 1-9, 2009.
doi:10.2528/PIERL08111903

23. Ma, H., A. Jen, and L. Dalton, "Polymer-based optical waveguides: Materials, processing, and devices," Advanced Materials, Vol. 14, No. 19, 1339-1365, 2002.
doi:10.1002/1521-4095(20021002)14:19<1339::AID-ADMA1339>3.0.CO;2-O

24. Cheng, T., G. Drew, B. Gillispie, J. Simko, C. Militello, A.Waldo, and A. Wong, "Vapor deposited thin gold coatings for high temperature electrical contact," IEEE Proceedings of the 18th International Conference on Electrical Contact, 404-413, Chicago, IL, USA, September, 1996.

25. Wang, F., J. Yang, L. Chen, X. Jiang, and M. Wang, "Optical switch based on multimode interference coupler," IEEE Photonics Technology Letters, Vol. 18, No. 2, 421-423, 2006.
doi:10.1109/LPT.2005.863201

26. Gao, L., J. Sun, X. Sun, C. Kang, Y. Yan, and D. Zhang, "Low Switching Power 2 × 2 thermo-optic switch using direct ultraviolet photolithography process," Optics Communications, Vol. 282, 4091-4094, 2009.
doi:10.1016/j.optcom.2009.07.026

27. Yulianti, I., A. S. M. Supa'at, S. M. Idrus, and A. M. Alhetar, "Cosine bend-linear waveguide digital optical switch with parabolic heater," Optics & Laser Technology, Vol. 42, 180-185, 2010.
doi:10.1016/j.optlastec.2009.06.003