Vol. 22
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-07-09
Design of a 60 GHz , 100 kW Cw Gyrotron for Plasma Diagnostics: Gds-V.01 Simulations
By
Progress In Electromagnetics Research B, Vol. 22, 379-399, 2010
Abstract
In this work, the design studies of a 60 GHz, 100 kW CW gyrotron have been presented. Mode selection is carefully studied with the aim of minimizing mode competition and to yield a perfect solid beam output through an RF window with a suitable dimpled-wall quasi-optical launcher. Cavity design and interaction computations are then carried out. In addition, preliminary design of the magnetron injection gun, magnetic guidance system, launcher, and RF window are presented. Thus, we present a feasibility study, which indicates that the operation of such a gyrotron is possible and can give a power in excess of 100 kW at an efficiency > 35%. As a part of this work, a complete Graphical User Interface package "GDS V.01" (Gyrotron Design Suit Ver.01) has been developed for the design and conceptualization of specific gyrotrons.
Citation
Ragini Jain, and Machavaram Kartikeyan, "Design of a 60 GHz , 100 kW Cw Gyrotron for Plasma Diagnostics: Gds-V.01 Simulations," Progress In Electromagnetics Research B, Vol. 22, 379-399, 2010.
doi:10.2528/PIERB10061508
References

1. Kartikeyan, M. V., E. Borie, and M. Thumm, Gyrotrons ---High Power Microwave and Millimeter Wave Technology, Springer-Verlag, Berlin-Heidelberg, Germany, 2004.

2. Thumm, M., State-of-the-art of High Power Gyro-devices and Free Electron Masers Update 2008, Scientific Report FZKA 7467, Forschungszentrum Karlsruhe, Germany, Apr. 2009.

3. Woskoboinikow, P., "Development of gyrotrons for plasma diagnostics," Review of Scientific Instruments, Mar. 1986.

4. Petelin, M. I., "Self-excitation of oscillations in a gyrotron," Inst. Appl. Phys., in Gyrotrons: Collected Papers, USSR Academy of Sciences, Gorki, Russia, 1981.

5. Kreischer, K. E. and R. J. Temkin, "Linear theory of an electron cyclotron maser operating at the fundamental," Int. J. Infrared Millim. Waves, Vol. 1, No. 2, 195-223, Jun. 1980.
doi:10.1007/BF01007116

6. Nusinovich, G. S., "Linear theory of a gyrotron with weakly tapered external magnetic field," Int. J. Electron., Vol. 64, No. 1, 127-136, Jan. 1988.
doi:10.1080/00207218808962789

7. Borie, E. and B. Jdicke, "Comments on the linear theory of the gyrotron," IEEE Trans. Plasma Sci., Vol. 16, No. 2, 116-121, Aug. 1988.
doi:10.1109/27.3802

8. Fliflet, A. W. and M. E. Read, "Use of weakly irregular waveguide theory to calculate eigenfrequencies, Q-values and RF field functions for gyrotron oscillators," Int. J. Electronics, Vol. 51, 475-484, 1981.
doi:10.1080/00207218108901350

9. Borie, E. and O. Dumbrajs, "Calculation of eigenmodes of tapered gyrotron resonators," Int. J. Electronics, Vol. 60, 143-154, 1986.
doi:10.1080/00207218608920768

10. Borie, E., Gyrotron Oscillators: Their Principles and Practice, edited by C. J. Edgcombe, Ch. 3, Taylor & Francis, London, 1993.

11. Fliflet, A. W., M. E. Read, K. R. Chu, and R. Seeley, "A self-consistent field theory for gyrotron oscillators: Application to a low Q gyromonotron," Int. J. Electronics, Vol. 53, 505-521, 1982.
doi:10.1080/00207218208901545

12. Borie, E., B. Jodicke, and O. Dumbrajs, "Self consistent code for a 150 GHz gyrotron," Int. J. Electronics, Vol. 7, 1863-1879, 1986.

13. Bratman, V. L., M. A. Moiseev, M. I. Petelin, and R. E. Erm, "Theory of gyrotrons with a non-fixed structure of the high-frequency field," Radiophys. Quantum Electron., Vol. 16, No. 4, 474-480, Apr. 1973.
doi:10.1007/BF01030898

14. Bratman, V. L., M. A. Moiseev, and M. I. Petelin, "Theory of gyrotrons with low-Q electromagnetic systems," Inst. Appl. Phys., in Gyrotrons: Collected Papers, USSR Academy of Sciences, Gorki, Russia, 1981.

15. Kern, S., "Numerische Simulation der Gyrotron-Wechselwirkung in koaxialen Resonatoren," Scientific Rep. FZKA 5837, Forschungszentrum Karlsruhe, Nov. 1996.

16. Baird, J. M. and W. Lawson, "Magnetron injection gun (MIG) design for gyrotron applications," Int. J. Electronics, Vol. 61, 969-984, 1986.

17. Vaughan, J. R. M., "Representation of axisymmetric magnetic fields in computer programs," IEEE Transactions on Electron. Devices, Vol. 19, 144, 1972.
doi:10.1109/T-ED.1972.17390

18. Illy, S., "ESRAY --- A computer code for the analysis of axisymmetric electron guns," Private Communication, 2002.

19. Wagner, D., M. Thumm, G. Gantenbein, W. Kasperek, and T. Idehara, "Analysis of a complete gyrotrons oscillator using the scattering matrix description," Int. J. Infrared Millimeter Waves, Vol. 19, No. 2, 185-194, 1998.
doi:10.1023/A:1022515506809

20. Chauhan, N., A. Mittal, D. Wagner, M. V. Kartikeyan, and M. Thumm, "Design and optimization of nonlinear tapers using particle swarm optimization," Int. J. Infrared & Millimeter Waves, Vol. 29, No. 8, 792-798, Aug. 2008.
doi:10.1007/s10762-008-9366-5

21. Cascade scattering matrix Code,v 3.0, Calabazas Creek Research Inc., 2000.

22. Thumm, M., "Modes and mode conversion in microwave devices," Generation and Application of High Power Microwaves, R. A. Cairns and A. D. R. Phelps (eds.), IOP, Bristol, U.K., 121-171, 1997.

23. Jin, J., "Quasi-optical mode converter for a coaxial cavity gyrotron," Wissenschaftliche Berichte, No. FZKA 7264, Karlsruhe, Mar. 2007.

24. Jin, J., B. Piosczyk, M. Thumm, T. Rzesnicki, and S. Zhang, "Quasi-optical mode converter/mirror system for a high power coaxial-cavity gyrotron," IEEE Transactions on Plasma Science, Vol. 34, No. 4, 1508-1515, Aug. 2006.
doi:10.1109/TPS.2006.877627

25. Launcher Optimization Tool, User Manua, Version 1.21, Calabazas Creek Research, Inc., 2006.

26. Nickel, H.-U., "Aspects of high frequency technology for the development of low-reflection output windows for high power millimeter-wave gyrotrons," Sci. Rep. FZKA 5513, Forschungszentrum Karlsruhe, Karlsruhe, Germany, 1995.

27. He, W., C. G. Whyte, E. G. Rafferty, A. W. Cross, A. D. R. Phelps, K. Ronald, A. R. Young, C. W.Robertson, D. C. Speirs, and David Rowlands, "Axis-encircling electron beam generation using a smooth magnetic cusp for gyrodevices," Appl. Phys. Lett., Vol. 93, 121501, 2008.
doi:10.1063/1.2988259

28. Donaldson, C. R., W. He, A. W. Cross, F. Li, A. D. R. Phelps, L. Zhang, K. Ronald, C. W. Robertson, C. G. Whyte, and A. R. Young, "A cusp electron gun for millimeter wave gyrodevices," Appl. Phys. Lett., Vol. 96, 141501, 2010.
doi:10.1063/1.3374888

29. Cooke, S. J., A. W. Cross, W. He, and A. D. R. Phelps, "Experimental operation of a cyclotron autoresonance maser oscillator at the second harmonic," Phys. Rev. Lett., Vol. 77, 4836-4839, 1996.
doi:10.1103/PhysRevLett.77.4836

30. Hirata, Y., Y. Mitsunaka, K. Hayashi, Y. Itoh, K. Sakamoto, and T. Imai, "The design of a tapered dimple-type mode converter/launcher for high-power gyrotrons," IEEE Transactions on Plasma Science, Vol. 31, No. 1, 142-145, Feb. 2003.
doi:10.1109/TPS.2003.808864

31. Neilson, J. M., "Optimal synthesis of quasi-optical launchers for high-power gyrotrons," IEEE Transactions on Plasma Science, Vol. 34, No. 3, 635-641, Jun. 2006.
doi:10.1109/TPS.2006.875755

32. Thumm, M., "Development of output windows for high power long pulse gyrotrons and EC wave applications," Int. J. Infrared Millim. Waves, Vol. 19, 3-14, 1998.
doi:10.1023/A:1022514528711

33. Borie, E. and S. Kern, "On the effect of RF-space charge on the beam-field interaction in gyrotrons," J. Infrared Milli. Terahz Waves, Vol. 30, 915-923, 2009.
doi:10.1007/s10762-009-9520-8