Vol. 23
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-07-09
Diffraction Theory of Waves by Resistive Surfaces
By
Progress In Electromagnetics Research B, Vol. 23, 1-13, 2010
Abstract
Diffraction of scalar plane waves by resistive surfaces are investigated by defining a new boundary condition in terms of the Dirichlet and Neumann conditions. The scattering problems of waves by a resistive half-plane and the interface between resistive and perfectly magnetic conducting half-planes are examined with the developed method. The resulting fields are plotted numerically. The numerical results show that the evaluated field expressions are in harmony with the theory.
Citation
Yusuf Ziya Umul, and Ugur Yalcin, "Diffraction Theory of Waves by Resistive Surfaces," Progress In Electromagnetics Research B, Vol. 23, 1-13, 2010.
doi:10.2528/PIERB10060205
References

1. Babich, V. M., M. A. Lyalinov, and V. E. Grikurov, Diffraction Theory: The Sommerfeld-malyuzhinets Technique, Alpha Science International Ltd., Oxford, UK, 2008.

2. Senior, T. B. A., "Diffraction by a semi-infinite metallic sheet," Proc. R. Soc. Lond., Vol. 213, 436-458, 1952.
doi:10.1098/rspa.1952.0137

3. Malyuzhinets, G. D., Ann. Phys., Vol. 461, 107, Leipzig, 1960.

4. Senior, T. B. A., "Diffraction by an imperfectly conducting half-plane at oblique incidence," Appl. Sci. Res., Vol. 8(B), 35-61, 1960.
doi:10.1007/BF02920043

5. Umul, Y. Z., "Modified theory of physical optics solution of impedance half plane problem," IEEE Trans. Antennas Propag., Vol. 54, 2048-2053, 2006.
doi:10.1109/TAP.2006.877176

6. Luebbers, R. J., "Propagation prediction for hilly terrain using GTD wedge diffraction," IEEE Trans. Antennas Propag., Vol. 32, 70-76, 1984.
doi:10.1109/TAP.1984.1143189

7. Senior, T. B. A., "Half plane edge diffraction," Radio Sci., Vol. 10, 911-919, 1975.
doi:10.1029/RS010i010p00911

8. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, IEE Press, New York and London, 1995.
doi:10.1049/PBEW041E

9. Umul, Y. Z., "Diffraction of evanescent plane waves by a resistive half-plane," J. Opt. Soc. Am. A, Vol. 24, 3226-3232, 2007.
doi:10.1364/JOSAA.24.003226

10. Yalcin, U., "Uniform scattered fields of the extended theory of boundary diffraction wave for PEC surfaces," Progress In Electromagnetics Research M, Vol. 7, 29-39, 2009.
doi:10.2528/PIERM09031201

11. Yalcin, U., "Scattering from perfectly magnetic conducting surfaces: The extended theory of boundary diffraction wave approach," Progress In Electromagnetics Research M, Vol. 7, 123-133, 2009.
doi:10.2528/PIERM09042210

12. Hatamzadeh-Varmazyar, S. and M. Naser-Moghadasi, "An integral equation modeling of electromagnetic scattering from the surfaces of arbitrary resistance distribution," Progress In Electromagnetics Research B, Vol. 3, 157-172, 2008.
doi:10.2528/PIERB07121404