Vol. 19
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-03-02
A Domain Decomposition Method Based on a Generalized Scattering Matrix Formalism and a Complex Source Expansion
By
Progress In Electromagnetics Research B, Vol. 19, 445-473, 2010
Abstract
A general domain decomposition scheme based on the use of complex sources is presented for the electromagnetic analysis of complex antenna and/or scattering problems. The analysis domain is decomposed into separate subdomains whose interactions are described through a network formalism, where the ports are associated with complex point source (CPS) beams radially emerging from the subdomain boundaries. Each obstacle is independently analyzed with the most appropriate technique and described through a generalized scattering matrix (GSM). Finally, a linear system is constructed, where the excitation vector is given by the complex source expansion of the primary sources. Thanks to the angular selectivity of the CPS beams, the subdomain interactions only involve a small fraction of the beams; thus, yielding sparse moderate size linear systems. Due to the re-usability of the GSMs, the proposed approach is particularly efficient in the context of parametric studies or antenna installation problems. Numerical examples are provided to demonstrate the efficiency and the accuracy of the proposed strategy.
Citation
Enrica Martini, Giacomo Carli, and Stefano Maci, "A Domain Decomposition Method Based on a Generalized Scattering Matrix Formalism and a Complex Source Expansion," Progress In Electromagnetics Research B, Vol. 19, 445-473, 2010.
doi:10.2528/PIERB10012110
References

1. Vouvakis, M., Z. Cendes, and J.-F. Lee, "A FEM domain decomposition method for photonic and electromagnetic band gap structures," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 721-733, Feb. 2006.
doi:10.1109/TAP.2005.863095

2. Leopold, P. R., B. Felsen, and M. Mongiardo, "Electromagnetic field representations and computations in complex structures I: Complexity architecture and generalized network formulation," International Journal of Numerical Modelling: Electronic Net-works, Devices and Fields, Vol. 15, No. 1, 93-107, 2002.
doi:10.1002/jnm.433

3. Barka, A. and P. Caudrillier, "Domain decomposition method based on generalized scattering matrix for installed performance of antennas on aircraft ," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1833-1842, Jun. 2007.
doi:10.1109/TAP.2007.898602

4. Van de Water, A. M., B. P. de Hon, M. C. van Beurden, A. G. Tijhuis, and P. de Maagt, "Linear embedding via Green's operators: A modeling technique for finite electromagnetic band-gap structures," Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), Vol. 72, No. 5, 056704, 2005.

5. Li, M.-K. and W. C. Chew, "Wave-field interaction with complex structures using equivalence principle algorithm," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 1, 130-138, Jan. 2007.
doi:10.1109/TAP.2006.888453

6. Nikolsky, V. V. and T. I. Nikolskaya, Decomposition Approach to the Problems of Electrodynamics, Nauka, National Bureau of Standards, Moscow, 1983.

7. D. M. Kerns, Plane-wave Scattering-matrix Theory of Antenna-antenna Interactions, Tech. Rep. NBS Monograph 162, Nat. Bur. Stand., 1981.

8. Elsherbeni, A. Z. and A. A. Kishk, "Modeling of cylindrical objects by circular dielectric and conducting cylinders," IEEE Transactions on Antennas and Propagation, Vol. 40, 96-99, Jan. 1992.
doi:10.1109/8.123363

9. Felbacq, D., G. Tayeb, and D. Maystre, "Scattering by a random set of parallel cylinders," Journal of the Optical Society of America A, Vol. 11, 2526-2538, Sep. 1994.
doi:10.1364/JOSAA.11.002526

10. Peterson, B. and S. Strom, "T matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3)," Phys. Rev. D, Vol. 8, No. 10, 3661-3678, Nov. 1973.
doi:10.1103/PhysRevD.8.3661

11. Tsang, L., C. E. Mandt, and K. H. Ding, "Monte Carlo simulations of the extinction rate of dense media with randomly distributed dielectric spheres based on solution of Maxwell's equations ," Optics Lett., Vol. 17, No. 5, 314-316, Mar. 1992.
doi:10.1364/OL.17.000314

12. Yan, W.-Z., Y. Du, Z. Li, E. Chen, and J. Shi, "Characterization of the validity region of the extended T-matrix method for scattering from dielectric cylinders with finite length ," Progress In Electromagnetics Research, Vol. 96, 309-328, 2009.
doi:10.2528/PIER09083101

13. Rubio, J., M. Gonzalez, and J. Zapata, "Generalized-scattering-matrix analysis of a class of finite arrays of coupled antennas by using 3-D fem and spherical mode expansion," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 3, 1133-1144, Mar. 2005.
doi:10.1109/TAP.2004.842687

14. Crocco, L., F. Cuomo, and T. Isernia, "Generalized scattering-matrix method for the analysis of two-dimensional photonic bandgap devices," J. Opt. Soc. Am. A, Vol. 24, No. 10, A12-A22, 2007.
doi:10.1364/JOSAA.24.000A12

15. Felsen, L. B., "Complex source point solution of the field equations and their relation to the propagation and scattering of Gaussian beams ," Symposia Mathematica, Vol. 18, 39-56, 1976.

16. Carli, G., E. Martini, and S. Maci, "Space decomposition method by using complex source expansion," Proc. IEEE Antennas and Propagation Society International Symposium 2008, Jul. 1-4, 2008.

17. Carli, G., E. Martini, M. Bandinelli, and S. Maci, "Domain decomposition and wave coupling by using complex source expansions," Proc. 3rd European Conference on Antennas and Propagation, EuCAP 2009, 2079-2082, Mar. 2009.

18. Tap, K., P. Pathak, and R. Burkholder, "Exact complex source point beam expansion of electromagnetic fields from arbitrary closed surfaces," Proc. IEEE Antennas and Propagation Society International Symposium 2007, 4028-4031, Jun. 2007.
doi:10.1109/APS.2007.4396424

19. Tap, K., P. Pathak, and R. Burkholder, "An exact CSP beam representation for EM wave radiation," International Conference on Electromagnetics in Advanced Applications, 75-78, Sep. 2007.
doi:10.1109/ICEAA.2007.4387242

20. Boag, A. and R. Mittra, "Complex multipole-beam approach to three-dimensional electromagnetic scattering problems," J. Opt. Soc. Am. A, Vol. 11, No. 4, 1505-1512, 1994.
doi:10.1364/JOSAA.11.001505

21. Erez, E. and Y. Leviatan, "Electromagnetic scattering analysis using a model of dipoles located in complex space," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 12, 1620-1624, Dec. 1994.
doi:10.1109/8.362812

22. Tap, K., P. Pathak, and R. Burkholder, "Fast complex source point expansion for accelerating the method of moments," International Conference on Electromagnetics in Advanced Applications, 2007, ICEAA 2007, 986-989, Sep. 2007.
doi:10.1109/ICEAA.2007.4387472

23. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propagation Magazine, Vol. 35, 7-12, 1993.
doi:10.1109/74.250128

24. Pozar, M., Microwave Engineering, 2 Ed., Wiley, New York, 1998.

25. Bucci, O. and G. Franceschetti, "On the degrees of freedom of scattered fields," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 7, 918-926, Jul. 1989.
doi:10.1109/8.29386

26. Bucci, O., "Computational complexity in the solution of large antenna and scattering problems," Radio Sci., Vol. 40, 2005.

27. Stupfel, B. and Y. Morel, "Singular value decomposition of the radiation operator application to model-order and far-field reduction ," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1605-1615, Jun. 2008.
doi:10.1109/TAP.2008.923311

28. Leopardi, P., "A partition of the unit sphere into regions of equal area and small diameter," Electronic Transactions on Numerical Analysis, Vol. 25, 309-327, 2006.

29. Martini, E., G. Carli, and S. Maci, "An equivalence theorem based on the use of electric currents radiating in free space," Antennas and Wireless Propagation Letters, Vol. 11, 421-424, 2008.
doi:10.1109/LAWP.2008.2001764

30. Hansen, J. E., Spherical Near-field Antenna Measurements, Peter Peregrinus Ltd., London, 1988.