Vol. 19
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-02-22
Improved Cfo Algorithm for Antenna Optimization
By
Progress In Electromagnetics Research B, Vol. 19, 405-425, 2010
Abstract
An improved Central Force Optimization (CFO) algorithm for antenna optimization is presented. CFO locates the global extrema an objective function to be maximized, in this case antenna directivity, by flying "probes" through the decision space (DS). The new implementation includes variable initial probe distribution and decision space adaptation. CFO's performance is assessed against a recognized antenna benchmark problem specifically designed to evaluate optimization evolutionary algorithms for antenna applications. In addition, summary results also are presented for a standard twenty-three function suite of analytic benchmarks. The improved CFO implementation exhibits excellent performance.
Citation
Richard Formato, "Improved Cfo Algorithm for Antenna Optimization," Progress In Electromagnetics Research B, Vol. 19, 405-425, 2010.
doi:10.2528/PIERB09112309
References

1. Formato, R. A., "Central force optimization: A new metaheuristic with applications in applied electromagnetics," Progress In Electromagnetics Research, Vol. 77, 425-491, 2007.
doi:10.2528/PIER07082403

2. Formato, R. A., "Central force optimization: A new computtional framework for multidimensional search and optimization," Nature Inspired Cooperative Strategies for Optimization (NICSO 2007), Studies in Computational Intelligence 129, N. Krasnogor, G. Nicosia, M. Pavone, and D. Pelta (eds.), Vol. 129, Springer-Verlag, Heidelberg, 2008.

3. Formato, R. A., "Central force optimisation: A new gradient-like metaheuristic for multidimensional search and optimisation," Int. J. Bio-inspired Computation, Vol. 1, No. 4, 217-238, 2009.
doi:10.1504/IJBIC.2009.024721

4. Formato, R. A., "Central force optimization: A new deterministic gradient-like optimization metaheuristic," OPSEARCH, Jour. of the Operations Research Society of India, Vol. 46, No. 1, 25-51, 2009.

5. Mohammad, G. and N. Dib, "Synthesis of antenna arrays using central force optimization," Mosharaka International Conference on Communications, Computers and Applications, 6-8, Amman, Jordan, Feb. 2009.

6. Qubati, G. M., R. A. Formato, and N. I. Dib, "Antenna benchmark performance and array synthesis using central force optimization," IET (U.K.) Microwaves, Antennas & Propagation, 2000 (in press).

7. Pantoja, M. F., A. R. Bretones, and R. G. Martin, "Benchmark antenna problems for evolutionary optimization algorithms," IEEE Trans. Antennas and Propagation, Vol. 55, No. 4, 1111-1121, Apr. 2007.
doi:10.1109/TAP.2007.893396

8. Li, W. T., X. W. Shi, and Y. Q. Hei, "An improved particle swarm optimization algorithm for pattern synthesis of phased arrays," Progress In Electromagnetics Research, Vol. 82, 319-332, 2008.
doi:10.2528/PIER08030904

9. Ghaffari-Miab, M., A. Farmahini-Farahani, R. Faraji-Dana, and C. Lucas, "An efficient hybrid swarm intelligence-gradient optimization method for complex time Green's functions of multilayered media," Progress In Electromagnetics Research, Vol. 77, 181-192, 2007.
doi:10.2528/PIER07072504

10. Sijher, T. S. and A. A. Kishk, "Antenna modeling by infinitesimal dipoles using genetic algorithms," Progress In Electromagnetics Research, Vol. 52, 225-254, 2005.
doi:10.2528/PIERC08010205

11. Cengiz, Y. and H. Tokat, "Linear antenna array design with use of genetic, memetic and tabu search optimization algorithms," Progress In Electromagnetics Research C, Vol. 1, 63-72, 2008.
doi:10.2528/PIERM09012404

12. Zainud-Deen, H. H., W. M. Hassen, and K. H. Awadalla, "Crack detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research M, Vol. 6, 47-58, 2009.
doi:10.2528/PIERB07121005

13. Mangaraj, B. B., I. S. Misra, and A. K. Barisal, "Optimizing included angle of symmetrical V-dipoles for higher directivity using bacteria foraging optimization algorithm," Progress In Electromagnetics Research B, Vol. 3, 295-314, 2008.
doi:10.2528/PIER02062602

14. Yau, D. and S. Crozier, "A genetic algorithm/method of moments approach to the optimization of an RF coil for MRI applications --- Theoretical considerations," Progress In Electromagnetics Research, Vol. 39, 177-192, 2003.

15. Burke, G. J., "Numerical electromagnetics code --- NEC-4, method of moments, Part I: User's manual and Part II: Program description --- Theory,", UCRL-MA-109338, Lawrence Livermore National Laboratory, Livermore, California, USA, Jan. 1992. https://ipo.llnl.gov/technology/software/softwaretitles/nec.php.

16. Schweickart, R., C. Chapman, D. Durda, P. Hut, B. Bottke, and D. Nesvorny, "Threat characterization: Trajectory dynamics (white paper 039),", 2006. http://arxiv.org/abs/physics/0608155.
doi:10.1051/0004-6361:20031039

17. Valsecchi, G. B., A. Milani, G. F. Gronchi, and S. R. Chesley, "Resonant returns to close approaches: Analytical theory," Astronomy & Astrophysics, Vol. 408, No. 3, 1179-1196, 2003.

18. Formato, R. A., "Are near earth objects the key to optimization theory?,", arXiv:0912.1394v1 [astro-ph.EP].
doi:10.1109/TEVC.2009.2011992

19. He, S., Q. H. Wu, and J. R. Saunders, "Group search optimizer: An optimization algorithm inspired by animal searching behavior," IEEE Trans. Evol. Computation, Vol. 13, No. 5, 973-990, Oct. 2009.

20. Formato, R. A., "Pseudorandomness in central force optimization,", arXiv:1001.0317v1[cs.NE], www.arXiv.org, 2010.