Vol. 17
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-09-16
Dispersion Analysis of FDTD Schemes for Doubly Lossy Media
By
Progress In Electromagnetics Research B, Vol. 17, 327-342, 2009
Abstract
This paper presents the 3-D dispersion analysis of finite-difference time-domain (FDTD) schemes for doubly lossy media, where both electric and magnetic conductivities are nonzero. Among the FDTD schemes presented are time-average (TA), time-forward (TF), time-backward (TB) and exponential time differencing (ETD). It is first shown that, unlike in electrically lossy media, the attenuation constant in doubly lossy media can be larger than its phase constant. This further calls for careful choice of cell size such that both wavelength and skin depth of the doubly lossy media are properly resolved. From the dispersion analysis, TF generally displays higher phase velocity and attenuation errors due to its first-order temporal accuracy nature compared to second-order ETD and TA. Although both have second-order temporal accuracy, ETD has generally lower phase velocity and attenuation errors than TA. This may be attributed to its closer resemblance to the solution of first-order differential equation. Numerical FDTD simulations in 1-D and 3-D further confirm these findings.
Citation
Ding Yu Heh, and Eng Leong Tan, "Dispersion Analysis of FDTD Schemes for Doubly Lossy Media," Progress In Electromagnetics Research B, Vol. 17, 327-342, 2009.
doi:10.2528/PIERB09082802
References

1. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Boston, M. A., 2005.

2. Luebbers, R., K. Kumagai, S. Adachi, and T. Uno, "FDTD calculation of transient pulse propagation through a nonlinear magnetic sheet," IEEE Trans. Electromagn. Compat., Vol. 35, No. 1, 90-94, Feb. 1993.
doi:10.1109/15.249400

3. Taflove, A. and M. E. Brodwin, "Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations," IEEE Trans. Microw. Theory Tech., Vol. 23, No. 8, 623-630, Aug. 1975.
doi:10.1109/TMTT.1975.1128640

4. Holland, R., L. Simpson, and K. S. Kunz, "Finite-difference analysis of EMP coupling to lossy dielectric structures," IEEE Trans. Electromagn. Compat., Vol. 22, No. 3, 203-209, Aug. 1980.
doi:10.1109/TEMC.1980.303880

5. Petropoulos, P. G., "Analysis of exponential time-differencing for FDTD in lossy dielectrics," IEEE Trans. Antennas Propagat., Vol. 45, No. 6, 1054-1057, Jun. 1997.
doi:10.1109/8.585755

6. Pereda, J. A., O. Garcia, A. Vegas, and A. Prieto, "Numerical dispersion and stability analysis of the FDTD technique in lossy dielectrics," IEEE Microw. Guided Wave Lett., Vol. 8, No. 7, 245-247, Jul. 1998.
doi:10.1109/75.701379

7. Velarde, L. F., J. A. Pereda, A. Vegas, and O. Gonzalez, "A weighted-average scheme for accurate FDTD modeling of electromagnetic wave propagation in conductive media," IEEE Antennas Propagat. Lett., Vol. 3, No. 7, 302-305, 2004.
doi:10.1109/LAWP.2004.838830

8. Schuster, C., A. Christ, and W. Fichtner, "Review of FDTD time-stepping schemes for efficient simulation of electric conductive media," Microwave Opt. Technol. Lett., Vol. 25, No. 1, 16-21, Apr. 2000.
doi:10.1002/(SICI)1098-2760(20000405)25:1<16::AID-MOP6>3.0.CO;2-O

9. Sun, G. and C. W. Trueman, "Numerical dispersion and numerical loss in explicit finite-difference time-domain methods in lossy media," IEEE Trans. Antennas Propagat., Vol. 53, No. 11, 3684-3690, Nov. 2005.

10. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159

11. Yurshevich, V. and S. Lomov, "Measurement of magnetic spectra of ferrites: Introducing a correction for ferrites dielectric parameters," Measurement Science Review, Vol. 3, No. 3, 41-44, 2003.

12. Singh, A. K., A. Verma, O. P. Thakur, C. Prakash, T. C. Goel, and R. G. Mendiratta, "Electrical and magnetic properties of Mn-Ni-Zn ferrites processed by citrate precursor method," Materials Lett., Vol. 57, No. 5-6, 1040-1044, Jan. 2003.
doi:10.1016/S0167-577X(02)00921-7

13. Hyde IV, M. W. and M. J. Havrilla, "A nondestructive technique for determining complex permittivity and permeability of magnetic sheet materials using two flanged rectangular waveguides," Progress In Electromagnetics Research, Vol. 79, 367-386, 2008.
doi:10.2528/PIER07102405

14. Lee, J. P. Y. and K. G. Balmain, "Wire antennas coated with magnetically and electrically lossy material," Radio Science, Vol. 14, No. 3, 437-445, May 1979.
doi:10.1029/RS014i003p00437

15. Du, J.-H., C. Sun, S. Bai, G. Su, Z. Ying, and H.-M. Cheng, "Microwave electromagnetic characteristics of a microcoiled carbon fibers/paraffin wax composite in Ku band," Journal of Materials Research, Vol. 17, No. 5, 1232-1236, May 2002.
doi:10.1557/JMR.2002.0182

16. Ulaby, F., Fundamentals of Applied Electromagnetics, 5th Edition, Prentice Hall, 2007.

17. Tan, E. L. and D. Y. Heh, "ADI-FDTD method with fourth order accuracy in time," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 5, 296-298, May 2008.