Vol. 16
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-07-06
The Field of an Electric Dipole and the Polarizability of a Conducting Object Embedded in the Interface Between Dielectric Materials
By
Progress In Electromagnetics Research B, Vol. 16, 1-20, 2009
Abstract
In this paper, a study is made of the electrostatic potential and field of an electric dipole located in the interface between two dielectric regions. When the dipole is oriented perpendicular to the interface, the detailed position of the charges of the dipole relative to the location of the interface has a significant effect on the value of the field produced away from the dipole, unlike the case of a dipole parallel to the interface. It is shown that it is the total dipole moment (due to both free and bound charges), rather than simply the impressed (free) dipole moment that is important in determining the field in this case. Based on these results, the question of defining and determining the electric polarizability of a perfectly conducting object partially embedded in a dielectric interface is examined. The example of a conducting sphere embedded halfway in the interface is studied as a demonstration of our general formulation. The results of this paper are important for the proper modeling of arrays of scatterers embedded in an interface, such as frequency-selective surfaces (FSSs) and metafilms.
Citation
Mohamed Abed Mohamed, Edward F. Kuester, Melinda Piket-May, and Christopher L. Holloway, "The Field of an Electric Dipole and the Polarizability of a Conducting Object Embedded in the Interface Between Dielectric Materials," Progress In Electromagnetics Research B, Vol. 16, 1-20, 2009.
doi:10.2528/PIERB09050408
References

1. Kuester, E. F., M. A. Mohamed, and C. L. Holloway, "Averaged transition conditions for electromagnetic fields at a metafilm," IEEE Trans. Antennas and Propagation, Vol. 51, 2641-2651, 2003.
doi:10.1109/TAP.2003.817560

2. Mohamed, M. A., Generalized sheet transition conditions for metafilm and its applications, Chapter 4, Ph.D. thesis, Department of Electrical and Computer Engineering, University of Colorado at Boulder, 2005.

3. Holloway, C. L., M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a metafilm: With an application to a controllable surface composed of resonant particles," IEEE Trans. Electromagnetic Compatibility, Vol. 47, 853-865, 2005.
doi:10.1109/TEMC.2005.853719

4. Holloway, C. L., P. Kabos, M. A. Mohamed, E. F. Kuester, M. D. Janezic, and J. Baker-Jarvis, "Realization of a controllable metafilm (`Smart Surface') composed of resonant magnetodielectric particles: Measurements and theory," IEEE Trans. Antennas and Propagation, (to be published).

5. Malinsky, M. D., K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles," J. Phys. Chem. B, Vol. 105, 2343-2350, 2001.
doi:10.1021/jp002906x

6. Kelly, K. L., E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B, Vol. 107, 668-677, 2003.
doi:10.1021/jp026731y

7. Paunov, V. N. and O. J. Cayre, "Supraparticles and `Janus' particles fabricated by replication of particle monolayers at liquid surfaces using a gel trapping technique," Adv. Mater., Vol. 16, 788-791, 2004.
doi:10.1002/adma.200306476

8. Novo, C., A. M. Funston, I. Pastoriza-Santos, L. M. Liz-Marzn, and P. Mulvaney, "Influence of the medium refractive index on the optical properties of single gold triangular prisms on a substrate," J. Phys. Chem. C, Vol. 112, 3-7, 2008.
doi:10.1021/jp709606u

9. Adonina, A. I. and V. V. Shcherbak, "Equivalent boundary conditions at a metal grating situated between two magnetic materials," Zh. Tekh. Fiz., Vol. 34, 333-335, 1964 [Russian], [Engl. transl. in Sov. Phys. Tech. Phys., Vol. 9, 261--263, 1964].

10. Bankov, S. Y. and I. V. Levchenko, "Equivalent boundary conditions for a closely spaced ribbon grating at the interface of two media," Radiotekh. Elektron., Vol. 33, 2045-2050, 1988 [Russian], [Engl. transl. in Sov. J. Commun. Technol. Electron., Vol. 34, No. 5, 67--72, 1989].

11. Strachan, C., "The reflexion of light at a surface covered by a monomolecular layer," Proc. Camb. Phil. Soc., Vol. 29, 116-130, 1933.
doi:10.1017/S0305004100011373

12. Schuhmann, D., "Electrical properties of adsorbed or spread films: The effective value of permittivities in the Helmholtz equation (plane distribution of point dipoles)," J. Colloid Interface Sci., Vol. 134, 152-160, 1990.
doi:10.1016/0021-9797(90)90261-L

13. Taylor, D. M. and G. F. Bayes, "Calculating the surface potential of unionized monolayers," Phys. Rev. E, Vol. 49, 1439-1449, 1994.
doi:10.1103/PhysRevE.49.1439

14. Bedeaux, D. and J. Vlieger, Optical Properties of Surfaces, Imperial College Press, London, 2002.

15. Sommerfeld, A., "Uber die Ausbreitung der Wellen in der drahtlosen Telegraphie," Ann. Phys., Ser. 4, Vol. 28, 665--736, 1909.

16. Sommerfeld, A., "Uber die Ausbreitung der Wellen in der drahtlosen Telegraphie," Ann. Phys., Ser. 4, Vol. 81, 1135--1153, 1926.

17. Boella, M. and F. Einaudi, "Note didattiche sul problema di Sommerfeld," Atti Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat., Vol. 96, 820-838, 1962.

18. Krasil'nikov , V. N., "A short dipole at a dividing boundary," Radiotekh. Elektron., Vol. 21, 2620-2623, 1976 [Russian], [Engl. transl. in Radio Eng. Electron. Phys., Vol. 21, No. 12, 134--136, 1976].

19. Weber, E., Electromagnetic Theory: Static Fields and Their Mapping, Dover, New York, 1965.

20. Atkinson, R. and N. F. Kubrakov, "Boundary conditions in the simplest model of linear and second harmonic magneto-optical effects," Phys. Rev. B, Vol. 65, 014432, 2001.
doi:10.1103/PhysRevB.65.014432

21. Bedeaux, D. and J. Vlieger, "A statistical theory of the dielectric properties of thin island films. I. The surface material coefficients," Physica, Vol. 73, 287-311, 1974.
doi:10.1016/0031-8914(74)90002-0

22. Felderhof, B. U. and G. Marowsky, "Linear optics of polarization sheets," Appl. Phys. B, Vol. 43, 161-166, 1987.
doi:10.1007/BF00695617

23. Idemen, M., "Straightforward derivation of boundary conditions on sheet simulating an anisotropic thin layer," Electron. Lett., Vol. 24, 663-665, 1988.
doi:10.1049/el:19880449

24. Idemen, M., "Universal boundary relations for the electromagnetic field," J. Phys. Soc. Japan, Vol. 59, 71-80, 1990.
doi:10.1143/JPSJ.59.71

25. Johnson, S. G., M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, "Roughness losses and volume-current methods in photonic-crystal waveguides," Appl. Phys. B, Vol. 81, 283-293, 2005.
doi:10.1007/s00340-005-1823-4

26. Berreman, D. W., "Anomalous Reststrahl structure from slight surface roughness," Phys. Rev., Vol. 163, 855-864, 1967.
doi:10.1103/PhysRev.163.855

27. Lee, F. T., K. C. Lee, S. K. Lai, Y. S. Cheng, and T. M. Hsu, "Electric field enhancement near surface irregularities," Solid State Commun., Vol. 63, 299-302, 1987.
doi:10.1016/0038-1098(87)90912-4

28. Wind, M. M., J. Vlieger, and D. Bedeaux, "The polarizability of a truncated sphere on a substrate I," Physica A, Vol. 141, 33-57, 1987.
doi:10.1016/0378-4371(87)90260-3

29. Wind, M. M., P. A. Bobbert, J. Vlieger, and D. Bedeaux, "The polarizability of a truncated sphere on a substrate II," Physica A, Vol. 143, 164-182, 1987.
doi:10.1016/0378-4371(87)90061-6

30. Baum, C. E., "The magnetic polarizability dyadic and point symmetry," Detection and Identification of Visually Obscured Targets, 219-242, Taylor and Francis, Philadelphia, 1998, [also AFWL Interaction Note 502, Kirtland Air Force Base, Albuquerque, NM, 1994].

31. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.