Vol. 15
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-06-04
Design and Analysis of Wideband Planar Monopole Antennas Using the Multilevel Fast Multipole Algorithm
By
Progress In Electromagnetics Research B, Vol. 15, 95-112, 2009
Abstract
Two planar monopole antennas with wide impedance bandwidth are designed. A full-wave method of moment (MoM) based on the electric field integral equation (EFIE) is applied to analyze the impedance bandwidth and radiation performance of the monopoles. Meanwhile, the multilevel fast multipole algorithm (MLFMA) is employed to reduce the memory requirements and computational time. Experimental results such as the impedance bandwidth and radiation patterns are also presented. The good agreement between the experimental and numerical results well demonstrates the efficiency and accuracy of the MLFMA code. Both the experimental and numerical results show that the two planar monopole antennas possess good input impedance and radiation performance over the AMPS, GSM900, and DCS band. As the proposed antennas can achieve such wide impedance bandwidth with relatively low profile, they are very suitable for multi-band mobile communication systems.
Citation
Yikai Chen, Shiwen Yang, Shiquan He, and Zai-Ping Nie, "Design and Analysis of Wideband Planar Monopole Antennas Using the Multilevel Fast Multipole Algorithm," Progress In Electromagnetics Research B, Vol. 15, 95-112, 2009.
doi:10.2528/PIERB09042002
References

1. Row, J. and S. Chen, "Wideband monopolar square-ring patch antenna," IEEE Trans. Antennas Propagat., Vol. 54, No. 4, 1335-1339, Apr. 2006.
doi:10.1109/TAP.2006.872660

2. Guo, Y., M. Chia, Z. Chen, and K. Luk, "Wide-band L-probe fed circular patch antenna for conical-pattern radiation," IEEE Trans. Antennas Propagat., Vol. 52, No. 4, 1115-1116, Apr. 2004.
doi:10.1109/TAP.2004.823971

3. Ravipati, C., "Compact circular microstrip antenna for conical patterns," Proc. IEEE Int. Symp. Antennas and Propagation, Vol. 4, 3820-3823, Monterey, CA, Jun. 2004..

4. Al-Zoubi, A., F. Yang, and A. Kishk, "A low-profile dual-band surface wave antenna with a monopole-like pattern," IEEE Trans. Antennas Propagat., Vol. 55, No. 12, 3404-3412, Dec. 2007.
doi:10.1109/TAP.2007.910310

5. Yang, F., Y. Rahmat-Samii, and A. Kishk, "Low-profile patch-fed surface wave antenna with a monopole-like radiation pattern," IET Microw. Antennas Propagat., Vol. 1, No. 1, 261-266, Feb. 2007.
doi:10.1049/iet-map:20050290

6. Dubost, G. and S. Zisler, Antennas a Large Band, 128-129, Masson, New York, 1976.

7. Hammoud, M., P. Poey, and F. Colombel, "Matching the input impedance of a broadband disc monopole," Electron. Lett., Vol. 29, No. 4, 406-407, Feb. 1993.
doi:10.1049/el:19930272

8. Wu, Q., R. Jin, J. Geng, and M. Ding, "Pulse preserving capabilities of printed circular disk monopole antennas with different grounds for the specified input signal forms," IEEE Trans. Antennas Propagat., Vol. 55, No. 10, 2866-2872, Oct. 2007.
doi:10.1109/TAP.2007.905854

9. Liang, J., L. Guo, C. C. Chiau, X. Chen, and C. G. Parini, "Study of CPW-fed circular disc monopole antenna for ultra wideband applications," IEE Proc. Microw. Antennas Propagat., Vol. 152, No. 6, 520-526, Dec. 2005.
doi:10.1049/ip-map:20045179

10. Ammann, M. and Z. Chen, "A wide-band shorted planar monopole with bevel," IEEE Trans. Antennas Propagat., Vol. 51, No. 4, 901-903, Apr. 2003.
doi:10.1109/TAP.2003.811061

11. Cerretelli, M., V. Tesi, and G. Gentili, "Design of a shape-constrained dual-band polygonal monopole for car roof mounting," IEEE Trans. Vehicular Technol., Vol. 57, No. 3, 1398-1403, May 2008.
doi:10.1109/TVT.2007.912153

12. Lin, S., "A low-profile folded planar monopole antenna for wireless communication," Microw. Opt. Technol. Lett., Vol. 36, No. 1, 46-48, Jan. 2003.
doi:10.1002/mop.10666

13. Su, S., K. Wong, and C. Tang, "Band-notched ultra-wideband planar-monopole antenna," Microw. Opt. Technol. Lett., Vol. 44, No. 3, 217-219, Feb. 2005.
doi:10.1002/mop.20592

14. Qiu, J., Z. Du, J. Lu, and K. Gong, "A case study to improve the impedance bandwidth of a planar monopole," Microw. Opt. Technol. Lett., Vol. 45, No. 2, 124-126, Apr. 2005.
doi:10.1002/mop.20744

15. Kerkhoff, A., R. Rogers, and H. Ling, "Design and analysis of planar monopole antennas using a genetic algorithm approach," IEEE Trans. Antennas Propagat., Vol. 52, No. 10, 2709-2718, Oct. 2004.
doi:10.1109/TAP.2004.834429

16. Zhou, H., Q. Liu, Y. Yin, and W. Wei, "Study of the band-notch function for swallow-tailed planar monopole antennas," Progress In Electromagnetics Research, Vol. 77, 55-65, 2007.
doi:10.2528/PIER07072506

17. Antonino-Daviu, E., M. Cabedo-Fabres, M. Ferrando-Bataller, and A. Valero-Nogueira, "Wideband double-fed planar monopole antennas," Electron. Lett., Vol. 39, No. 23, 1635-1636, Nov. 2003.
doi:10.1049/el:20031087

18. Wong, K., C. Wu, and S. Su, "Ultrawide-band square planar metal-plate monopole antenna with a trident-shaped feeding strip," IEEE Trans. Antennas Propagat., Vol. 53, No. 4, 1262-1269, Apr. 2005.
doi:10.1109/TAP.2005.844430

19. Anob, P. V., K. P. Ray, and G. Kumar, "Wideband orthogonal square monopole antennas with semi-circular base," Proc. IEEE Int. Symp. Antennas and Propagation, Vol. 3, 294-297, Boston, MA, Jul. 2001.

20. Chen, Z., "Broadband roll monopole," IEEE Trans. Antennas Propagat., Vol. 51, No. 11, 3175-3177, Nov. 2003.
doi:10.1109/TAP.2003.818777

21. Su, S. and K. Wong, "Broadband omnidirectional U-shaped metal-plate monopole antenna," Microw. Opt. Technol. Lett., Vol. 44, No. 4, 365-369, Feb. 2005.
doi:10.1002/mop.20636

22. Thiele, G. and T. Newhouse, "A hybrid technique for combining moment methods with the geometrical theory of diffraction," IEEE Trans. Antennas Propagat., Vol. 23, No. 1, 62-69, Jan. 1975.
doi:10.1109/TAP.1975.1141004

23. Awadalla, K. and T. Maclean, "Input impedance of a monopole antenna at the center of a finite ground plane," IEEE Trans. Antennas Propagat., Vol. 26, No. 2, 244-248, Mar. 1978.
doi:10.1109/TAP.1978.1141824

24. Richmond, J., "Monopole antenna on circular disk over flat earth," IEEE Trans. Antennas Propagat., Vol. 33, No. 6, 633-637, Jun. 1985.
doi:10.1109/TAP.1985.1143641

25. Richmond, J., "Monopole antenna on circular disk," IEEE Trans. Antennas Propagat., Vol. 32, No. 12, 1282-1287, Dec. 1984.
doi:10.1109/TAP.1984.1143254

26. Cook, G. and S. Khamas, "Fast approximate moment method model for monopole arbitrarily positioned on circular ground plane," Electron. Lett., Vol. 29, No. 2, 223-224, Jan. 1993.
doi:10.1049/el:19930152

27. Song, J., C. Lu, and W. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

28. Ergül and L. Gürel, "Modelling and synthesis of circular-sectoral arrays of log-periodic antennas using multilevel fast multipole algorithm and genetic algorithms," Radio Science, 42, RS3018, Jun. 2007.

29. Brown, W. and D. Wilton, "Singular basis functions and curvilinear triangles in the solution of the electric field integral equation," IEEE Trans. Antennas Propagat., Vol. 47, No. 2, 347-353, Feb. 1999.
doi:10.1109/8.761075

30. Ammann, M. and Z. Chen, "Wideband monopole antennas for multi-band wireless systems," IEEE Antennas Propagat. Mag., Vol. 45, No. 2, 146-150, Apr. 2003.
doi:10.1109/MAP.2003.1203133

31. Evans, J. and M. Amunann, "Planar trapezoidal and pentagonal monopoles with impedance bandwidths in excess of 10 : 1," IEEE Int. Symp. Antennas and Propagation, Vol. 3, 1558-1561, Orlando, FL, Jul. 1999.

32. Matthews, J. and G. Cook, "An efficient method for attaching thin wire monopoles to surfaces modeled using triangular patch segmentation," IEEE Trans. Antennas Propagat., Vol. 51, No. 7, 1623-1629, Jul. 2003.
doi:10.1109/TAP.2003.814727

33. Yuan, N., T. Yeo, X. Nie, Y. Gan, and L. Li, "Analysis of probefed conformal microstrip antennas on finite grounded substrate," IEEE Trans. Antennas Propagat., Vol. 54, No. 2, 554-563, Feb. 2006.
doi:10.1109/TAP.2005.863115

34. Makarov, S., "MoM antenna simulations with Matlab: RWG basis functions," IEEE Antennas Propagat. Mag., Vol. 43, No. 5, 100-107, Oct. 2001.
doi:10.1109/74.979384

35. Makarov, S., Antenna and EM Modeling with MATLAB, Wiley, Hoboken, NJ, 2002.

36. Liu, X., C. Liang, and X. Zhao, "Analysis of waveguide slot antennas using MLFMA," Microw. Opt. Technol. Lett., Vol. 50, No. 1, 65-68, Jan. 2008.
doi:10.1002/mop.23015

37. Namkung, J., E. Hines, R. Green, and M. Leeson, "Probefed microstrip antenna feed point optimization using a genetic algorithm and the method of moments," Microw. Opt. Technol. Lett., Vol. 49, No. 2, 325-329, Feb. 2007.
doi:10.1002/mop.22120

38. Lim, C., L. Li, and M. Leong, "Method of moments analysis of electrically large thin hexagonal loop transceiver antennas: Near- and far-zone fields," Progress In Electromagnetics Research, Vol. 30, 251-271, 2001.
doi:10.2528/PIER99090203

39. Bogaert, I., J. Peeters, and F. Olyslager, "A nondirective plane wave MLFMA stable at low frequencies," IEEE Trans. Antennas Propagat., Vol. 56, No. 12, 3752-3767, Dec. 2008.
doi:10.1109/TAP.2008.2007356