Vol. 11
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-11-15
Analysis of Radiation Characteristics of a Probe-Excited Rectangular Ring Antenna by the Dyadic Green's Function Approach
By
Progress In Electromagnetics Research B, Vol. 11, 79-101, 2009
Abstract
Abstract-Radiation characteristics of a probe-excited rectangular ring antenna are investigated by using the dyadic Green function approach. The radiation characteristics, such as radiation pattern, beam-peak direction, half-power beamwidth and directivity, are analyzed. For the specified operating frequency, the ring width and ring height are selected as the same crosssectional dimension of rectangular waveguide operated at the dominant mode. The effects of the excited probe and rectangular ring to the modal distributions are described. For the desired modal distribution, the directivity primarily depends on the ring lengths. For compact size of the proposed antenna, the ring length of 0.4λ is chosen to provide a bidirectional pattern with the calculated half-power beamwidth in E-plane and H-plane of 100 and 69 degrees respectively, and directivity of 4.43 dBi. Furthermore, the prototype antenna was fabricated and measured. The coincided results between the theory and the experiment are obtained.
Citation
Suthasinee Lamultree, Chuwong Phongcharoenpanich, Sompol Kosulvit, and Monai Krairiksh, "Analysis of Radiation Characteristics of a Probe-Excited Rectangular Ring Antenna by the Dyadic Green's Function Approach," Progress In Electromagnetics Research B, Vol. 11, 79-101, 2009.
doi:10.2528/PIERB08101602
References

1. Huang, C.-W. P., A. Z. Elsherbeni, J. J. Chen, and C. E. Smith, "FDTD characterization of meander line antennas for RF and wireless communications," Progress In Electromagnetics Research, Vol. 24, 185-199, 1999.
doi:10.2528/PIER99020204

2. Wang, Y. J. and C. K. Lee, "Design of dual-frequency microstrip patch antennas and application for IMT-2000 mobile handsets," Progress In Electromagnetics Research, Vol. 36, 265-278, 2002.
doi:10.2528/PIER02022102

3. Eldek, A. A., A. Z. Elsherbeni, and C. E. Smith, "Dualwideband square slot antenna with a U-shaped printed tuning stub for personal wireless communication systems," Progress In Electromagnetics Research, Vol. 53, 319-333, 2005.
doi:10.2528/PIER04103001

4. Song, Y., Y.-C. Jiao, G. Zhao, and F.-S. Zhang, "Multiband CPW-FED triangle-shaped monopole antenna for wireless applications," Progress In Electromagnetics Research, Vol. 70, 329-336, 2007.
doi:10.2528/PIER07020201

5. Si, L.-M. and X. Lv, "CPW-FED multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications," Progress In Electromagnetics Research, Vol. 83, 33-146, 2008.
doi:10.2528/PIER08050404

6. Cho, K., T. Hori, H. Tozawa, and S. Kiya, "Bidirectional rod antennas comprising collinear antenna and parasitic elements," IEICE Transactions on Communications, No. 6, 1255-1260, 1998.

7. Cho, K., T. Hori, and K. Kagoshima, "Bidirectional rod antennas comprising a narrow patch and parasitic elements," IEICE Transactions on Communications, No. 9, 2482-2489, 2001.

8. Arai, H. and K. Cho, "Cellular and PHS base station antenna systems," IEICE Transactions on Communications, No. 9, 980-992, 2003.

9. Lamultree, S., C. Phongcharoenpanich, S. Kosulvit, and M. Krairiksh, "An equivalent circuit of a bidirectional antenna using a probe excited rectangular ring," The Proceedings of the 2004 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, Vol. 2, 1672-1675, 2004.

10. Lamultree, S., C. Phongcharoenpanich, S. Kosulvit, and M. Krairiksh, "Investigations of a bidirectional antenna using a probe excited rectangular ring," The Proceedings of Asia-Pacific Microwave Conference 2005, Vol. 5, 2943-2946, 2005.

11. Liu, H., B.-Z. Wang, and W. Shao, "Dual-band bi-directional pattern reconfigurable fractal patch antenna for millimeter wave application," International Journal of Infrared and Millimeter Waves, Vol. 28, No. 1, 25-31, 2007.
doi:10.1007/s10762-006-9184-6

12. Kosulvit, S., M. Krairiksh, C. Phongcharoenpanich, and T. Wakabayashi, "A simple and cost-effective bidirectional antenna using a probe excited circular ring," IEICE Transactions on Electronics, Vol. E84-C, No. 4, 443-450, 2001.

13. Phongcharoenpanich, C., T. Sroysuwan, P. Wounchoum, S. Kosulvit, and M. Krairiksh, "An array of a probe excited circular ring radiating bidirectional pattern," The Proceedings of the 2002 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, Vol. 2, 292-294, 2002.

14. Kosulvit, S., M. Krairiksh, C. Phongcharoenpanich, and T. Wakabayashi, "A bidirectional antenna using a probe excited circular ring," The Proceedings of the 2001 Progress in Electromagnetics Research Symposium, 423, 2001.

15. Risser, J. R., Microwave Antenna Theory and Design, Mc-Graw-Hill, 1949.

16. Yaghjian, A., "Approximate formulas for the far field and gain of open-ended rectangular waveguide," IEEE Transactions on Antennas and Propagations, Vol. 32, No. 4, 378-384, 1984.
doi:10.1109/TAP.1984.1143332

17. Jia, H., K. Yoshitomi, and K. Yasumoto, "Rigorous analysis of rectangular waveguide junctions by fourier transform technique," Progress In Electromagnetics Research, Vol. 20, 263-282, 1998.
doi:10.2528/PIER98032600

18. Jia, H., K. Yoshitomi, and K. Yasumoto, "Rigorous analysis of E-/H-plane junctions in rectangular waveguides using fourier transform technique," Progress In Electromagnetics Research, Vol. 21, 273-292, 1999.
doi:10.2528/PIER98081701

19. El Sabbagh, M. and K. Zaki, "Modeling of rectangular waveguide junctions containing cylindrical posts," Progress In Electromagnetics Research, Vol. 33, 299-331, 2001.
doi:10.2528/PIER01022603

20. Li, L.-W., T.-X. Zhao, M.-S. Leong, and T.-S. Yeo, "A spatial-domain method of moments analysis of a cylindrical-rectangular chirostrip," Progress In Electromagnetics Research, Vol. 35, 165-182, 2002.
doi:10.2528/PIER01060503

21. Booty, M. R. and G. A. Kriegsmann, "Reflection and transmission from a thin inhomogeneous cylinder in a rectangular TE10 waveguide," Progress In Electromagnetics Research, Vol. 47, 263-296, 2004.
doi:10.2528/PIER03122304

22. Liang, J.-F., H.-C. Chang, and K. A. Zaki, "Coaxial probe modeling in waveguides and cavities," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 12, 2172-2180, 1992.
doi:10.1109/22.179878

23. Yao, H.-W. and K. A. Zaki, "Modeling of generalized coaxial probes in rectangular waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 12, 2805-2811, 1995.
doi:10.1109/22.475638

24. Tai, C. T., Dyadic Green's Functions in Electromagnetic Theory, 2nd ed., IEEE Press, 1994.

25. Tai, C. T., "On the eigenfunction expansion of dyadic Green's function," The Proceedings of IEEE, Vol. 61, 480-481, 1973.

26. Moroney, D. T. and P. J. Cullen, "The Green's function perturbation method for solution of electromagnetic scattering problems," Progress In Electromagnetics Research, Vol. 15, 221-252, 1997.
doi:10.2528/PIER96012900

27. Li, L.-W., M.-S. Leong, P.-S. Kooi, T.-S. Yeo, and K. H. Tan, "An analytic representation of dyadic Green's functions for a rectangular chirowaveguide: Part I — Theory," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 1, 67-73, 1999.
doi:10.1109/22.740078

28. Leong, M., K. H. Tan, L.-W. Li, P.-S. Kooi, and T.-S. Yeo, "An analytic representation of dyadic Green's functions for a rectangular chirowaveguide: Part II — Results," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 1, 74-81, 1999.
doi:10.1109/22.740080

29. Liu, S., L. W. Li, M. S. Leong, and T. S. Yeo, "Rectangular conducting waveguide filled with uniaxial anisotropic media: A modal analysis and dyadic Green's function," Progress In Electromagnetics Research, Vol. 25, 111-129, 2000.
doi:10.2528/PIER99052501

30. Marliani, F. and A. Ciccolella, "Computationally efficient expressions of the dyadic Green's function for rectangular enclosures," Progress In Electromagnetics Research, Vol. 31, 195-223, 2001.
doi:10.2528/PIER00062901

31. Balanis, C. A., Antenna Theory Analysis and Design, John Wiley & Sons, 1997.

32. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.

33. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. AP-30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818