Vol. 11
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-10-28
Near-Field Radiation from Commercial Cellular Phones Using a TEM Cell
By
Progress In Electromagnetics Research B, Vol. 11, 15-28, 2009
Abstract
A technique to characterize the fields generated by a cell phone, and projected into an area inside a TEM cell for possible biological interaction studies is described. A double-ended monopole antenna is proposed as the lead signal inducer between the inside and the outside areas of the TEM cell. The coupling voltage at the TEM cell ports and the field distribution within the area under test (AUT) were found to be a function of the phone position, polarization, and dialing type. The measurements for a GSM 850MHz cellular phone showed that the optimum setup is achievable when the phone is placed outside the TEM cell and co-polarized with the signal leader. An improvement of the field uniformity is possible with the use of a shorter signal leader but at the cost of decreased field strength. The proposed setup can be utilized in studies and experiments related to the radio frequency effects on biological cells and organs.
Citation
Nattaphong Boriraksantikul, Phumin Kirawanich, and Naz E. Islam, "Near-Field Radiation from Commercial Cellular Phones Using a TEM Cell," Progress In Electromagnetics Research B, Vol. 11, 15-28, 2009.
doi:10.2528/PIERB08100201
References

1. Lin, J. C., "Specific Absorption Rates (SARs) induced in head tissues by microwave radiation from cell phones," IEEE Antennas and Propagation Magazine, Vol. 42, No. 5, Oct. 2000.

2. Lin, J. C., "Cell phone testing and fundamental scientific research," IEEE Antennas and Propagation Magazine, Vol. 43, No. 4, Aug. 2001.
doi:10.1109/74.951570

3. Lin, J. C., "Can cell phones promote brain tumors: The interphone study?," IEE Antennas and Propagation Magazine, Vol. 47, No. 2, Apr. 2005.

4. Lin, J. C., "Health effects of cell-phone research outcomes and sources of funding," IEEE Antennas and Propagation Magazine, Vol. 49, No. 2, Apr. 2007.
doi:10.1109/MAP.2007.376677

5. Crawford, M. L., "Generation of standard EM fields using TEM transmission cells," IEEE Trans. Electromagn. Compat., Vol. 16, Nov. 1974.

6. Crawford, M. L., J. L. Workman, and C. L. Thomas, "Expanding the bandwidth of TEM cells for EMC measurements," IEEE Trans. Electromagn. Compat., Vol. 20, Nov. 1978.

7. Andrews, E. F., H. B. Lim, D. Xiao, S. Khamas, P. L. Starke, S. P. Ang, A. T. Barker, G. G. Cook, L. A. Coulton, and A. Scutt, "Investigation of SAR uniformity TEM cell exposed culture media," IEEE Antenna Measurements and SAR, 2004.

8. Sarimov, R., L. O. G. Malmgren, E. Markova, B. R. R. Persson, and I. Y. Belyaev, "Nonthermal GSM microwaves affect chromatin conformation in human lymphocytes similar to heat shock," IEEE Trans. Plasma Sci., Vol. 32, No. 4, Aug. 2004.
doi:10.1109/TPS.2004.832613

9. Lim, H. B., G. G. Cook, A. T. Barker, and L. A. Coulton, "FDTD design of RF dosimetry apparatus to quantify the effects of near fields from mobile handsets on stress response mechanisms of human whole blood," Int. J. Numer. Model., Vol. 15, 563-577, 2002.
doi:10.1002/jnm.465

10. Imaida, K., M. Taki, T. Yamaguchi, T. Ito, S. Watanabe, K.Wake, A. Aimoto, Y. Kamimura, N. Ito, and T. Shirai, "Lack of promoting effects of the electromagnetic near-field used for cellular phones (929.2 MHz) on rat liver carcinogenesis in a medium-term liver bioassay," Carcinogenesis, Vol. 19, 313-314, 1998.

11. Wang, J., M. Fujita, O. Fujiwara, K. Wake, and S. Watanabe, "Uncertainty evaluation of an in vivo near-field exposure setup for testing biological effects of cellular phones," IEEE Trans. Electromagn. Compat., Vol. 48, No. 3, 545-551, Aug. 2006.
doi:10.1109/TEMC.2006.877779

12. Das, S. K., V. Venkatesan, and B. K. Sinha, "A technique of electromagnetic interference measurements with high-impedance electric and low-impedance magnetic fields inside a TEM cell," IEEE International Symposium on Electromagnetic Compatibility, 367-369, Washington, DC, 1990.

13. CST MICROWAVE STUDIO Educational Version, CST Computer Simulation Technology, 2008.