1. Stratton, J. A. and L. J. Chu, "Diffraction theory of electromagnetic waves," Phys. Rev., Vol. 56, No. 1, 99-107, 1939.
doi:10.1103/PhysRev.56.99
2. Hsiao, G. C. and R. E. Kleinman, "Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 316-328, 1997.
doi:10.1109/8.558648
3. Tai, C. T., "Direct integration of field equations," Progress In Electromagnetics Research, Vol. 28, 339-359, 2000.
doi:10.2528/PIER99101401
4. Borel, S., D. P. Levadoux, and F. Alouges, "A new wellconditioned integral formulation for Maxwell equations in three dimensions," IEEE Trans. Antennas Propagat., Vol. 53, No. 9, 2995-3004, 2005.
doi:10.1109/TAP.2005.854561
5. Sheng, X. Q., J. M. Jin, J. Song, W. C. Chew, and C. C. Lu, "Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies," IEEE Trans. Antennas Propagat., Vol. 46, No. 11, 1718-1726, 1998.
doi:10.1109/8.736628
6. Harrington, R. F., Time-harmonic Electromagnetic Fields, Wiley, 2001.
7. Sauter, S. and C. Schwab, Randelementmethoden, BG Teubner, 2004.
8. Steinbach, O., Numerische Naherungsverfahren fur elliptische Randwertprobleme, Advances in Numerical Mathematics, BG Teubner, 2003.
9. Hiptmair, R., "Coupling of finite elements and boundary elements in electromagnetic scattering," SIAM J. Numer. Anal., Vol. 41, 919-944, 2003.
doi:10.1137/S0036142901397757
10. Buffa, A. and R. Hiptmair, "Galerkin boundary element methods for electromagnetic scattering," Topics in Computational Wave Propagation. Direct and Inverse Problems, Vol. 31, 83-124, 2003.
11. de La Bourdonnaye, A., "Some formulations coupling finite element and integral equation methods for Helmholtz equation and electromagnetism," Numer. Math., Vol. 69, No. 3, 257-268, 1995.
doi:10.1007/s002110050091
12. Knockaert, L., D. De Zutter, G. Lippens, and H. Rogier, "On the Schur complement form of the Dirichlet-to-Neumann operator," Wave Motion, Vol. 45, No. 3, 309-324, 2008.
doi:10.1016/j.wavemoti.2007.07.004
13. Crabtree, D. E. and E. V. Haynsworth, "An identity for the Schur complement of a matrix," Proc. Amer. Math. Soc., Vol. 22, 364-366, 1969.
doi:10.2307/2037057
14. Corach, G., A. Maestripieri, and D. Stojanoff, "Generalized Schur complements and oblique projections," Lin. Alg. Appl., Vol. 341, 259-272, 2002.
doi:10.1016/S0024-3795(01)00384-6
15. Van Bladel, J., Electromagnetic Fields, McGraw-Hill, 1964.
16. Van Bladel, J. G., Electromagnetic Fields, 2nd Ed., IEEE Press, 2007.
17. Garcia, S. R. and M. Putinar, "Complex symmetric operators and applications," Trans. Amer. Math. Soc., Vol. 358, No. 3, 1285-1315, 2005.
doi:10.1090/S0002-9947-05-03742-6
18. Meyer, K. R. and G. R. Hall, Introduction to Hamiltonian Dynamical Systems and the N-body Problem. Applied Mathematical Sciences, Vol. 90, Springer, 1992.
19. Lin, W. W. and C. S. Wang, "On computing stable Lagrangian subspaces of Hamiltonian matrices and symplectic pencils," SIAM J. Matrix Anal. Appl., Vol. 18, 590-614, 1997.
doi:10.1137/S0895479894272712
20. Laub, A., "A Schur method for solving algebraic Riccati equations," IEEE Trans. Automat. Control, Vol. 24, 913-921, 1979.
doi:10.1109/TAC.1979.1102178
21. Hanson, G. W. and A. B. Yakovlev, Operator Theory for Electromagnetics. An Introduction, Springer, 2002.
22. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, No. 6, 676-696, 1981.
doi:10.1109/PROC.1981.12048
23. Colton, D. and R. Kress, Integral Equation Methods in Scattering Theory, Wiley, 1984.
24. Jones, D. S., Acoustic and Electromagnetic Waves, Clarendon Press, 1986.