Vol. 3
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2007-12-08
Quasi-Static Models Based on Artificial Neural Neworks for Calculating the Characteristic Parameters of Multilayer Cylindrical Coplanar Waveguide and Strip Line
By
Progress In Electromagnetics Research B, Vol. 3, 1-22, 2008
Abstract
In this paper, two different neural models are proposed for calculating the quasi-static parameters of multilayer cylindrical coplanar waveguides and strip lines. These models were basically developed by training the artificial neural networks with the numerical results of quasi-static analysis. Neural models were trained with four different learning algorithms to obtain better performance and faster convergence with simpler structure. When the performances of neural models are compared with each other, the best test results are obtained from the multilayered perceptrons trained by the Levenberg- Marquardt algorithm. The results obtained from the neural models are in very good agreements with the theoretical results available in the literature.
Citation
Celal Yildiz, and Mustafa Turkmen, "Quasi-Static Models Based on Artificial Neural Neworks for Calculating the Characteristic Parameters of Multilayer Cylindrical Coplanar Waveguide and Strip Line," Progress In Electromagnetics Research B, Vol. 3, 1-22, 2008.
doi:10.2528/PIERB07112806
References

1. Su, H. C. and K. L. Wong, "Dispersion characteristics of coplanar waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, 2120-2122, 1996.
doi:10.1109/22.544018

2. Dib, N., T. Weller, M. Scardeletti, and M. Imparato, "Analysis of cylindrical transmission lines with finite difference time domain method," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 509-512, 1999.
doi:10.1109/22.754886

3. Su, H. C. and K. L. Wong, "Quasi-static solutions of cylindrical coplanar waveguides," Microwave Optical Technology Letters, Vol. 14, 347-351, 1997.
doi:10.1002/(SICI)1098-2760(19970420)14:6<347::AID-MOP12>3.0.CO;2-0

4. Dib, N. and A. Al-Zoubi, "Quasi-static analysis of asymmetric cylindrical coplanar waveguides with finite-extent ground," International Jour. Electronics, Vol. 87, 185-198, 2000.
doi:10.1080/002072100132336

5. Karpuz, C., M. Duyar, and A. Gorur, "Analysis of cylindrical conductor-backed coplanar waveguides," Microwave Optical Technology Letters, Vol. 27, 144-146, 2000.
doi:10.1002/1098-2760(20001020)27:2<144::AID-MOP19>3.0.CO;2-G

6. Alkan, M., A. Gorur, and C. Karpuz, "Quasi-static analysis of cylindrical coplanar waveguide with multilayer dielectrics," International Jour. of RFand Microwave CAE, Vol. 8, 303-314, 1998.
doi:10.1002/(SICI)1099-047X(199807)8:4<303::AID-MMCE4>3.0.CO;2-G

7. Karpuz, C., A. Gorur, and M. Alkan, "Quasistatic analysis of cylindrical coplanar strip lines," Microwave and Optical Technology Letters, Vol. 17, 148-151, 1998.
doi:10.1002/(SICI)1098-2760(19980205)17:2<148::AID-MOP18>3.0.CO;2-4

8. Du, Z., K. Gong, J. S. Fu, Z. Feng, and B. Gao, "CAD models for asymmetrical, elliptical, cylindrical, and elliptical cone coplanar strip lines," IEEE Trans. Microwave Theory Tech., Vol. 48, 312-316, 2000.
doi:10.1109/22.821784

9. Gorur, A., M. Duyar, and C. Karpuz, "Analytic formulas for calculating the quasistatic parameters of a multilayer cylindrical coplanar strip line," Microwave and Optical Technology Letters, Vol. 22, 432-436, 1999.
doi:10.1002/(SICI)1098-2760(19990920)22:6<432::AID-MOP20>3.0.CO;2-V

10. Akan, V. and E. Yazgan, "Quasi-static solutions of multilayer elliptical, cylindrical coplanar striplines and multilayer coplanar," IEEE Trans. Microwave Theory Tech., Vol. 53, 3681-3686, 2005.
doi:10.1109/TMTT.2005.856080

11. Bedair, S. S. and I. Wolff, "Fast and accurate analytic formulas for calculating the parameters of a general broadside-coupled coplanar waveguide for (M)MIC applications," IEEE Trans. Microwave Theory Tech., Vol. 37, 843-850, 1989.
doi:10.1109/22.17450

12. Haykin, S., Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Comp., New York, USA, 1994.

13. Christodoulou, C. G. and M. Georgiopoulos, Application of Neural Networks in Electromagnetics, Artech House, MA, 2001.

14. Zhang, Q. J. and K. C. Gupta, Neural Networks for RF and Microwave Design, Artech House, 2000.

15. Watson, P. M. and K. C. Gupta, "Design and optimization of CPW circuits using EM-ANN models for CPW components," IEEE Transaction Microwave Theory Techniques, Vol. 45, 2515-2523, 1997.
doi:10.1109/22.643868

16. Devabhaktuni, V. K., M. C. E. Yagoub, Y. Fang, J. Xu, and Q. J. Zhang, "Neural networks for microwave modeling: model development issues and nonlinear modeling techniques," International J. of RFand Microwave CAE, Vol. 11, 4-21, 2001.
doi:10.1002/1099-047X(200101)11:1<4::AID-MMCE2>3.0.CO;2-I

17. Yildiz, C., S. Sagiroglu, and M. Turkmen, "Neural model for coplanar waveguide sandwiched between two dielectric substrates," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 151, 7-12, 2004.
doi:10.1049/ip-map:20040249

18. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of airsuspended trapezoidal and rectangular-shaped microshield lines," Journal of Electromagnetic Wave and Applications, Vol. 20, 1161-1174, 2006.
doi:10.1163/156939306777442917

19. Jin, L. C., L. Ruan, and L. Y. Chun, "Design E-plane bandpass filter based on EM-ANN model," Journal of Electromagnetic Wave and Applications, Vol. 20, 1061-1069, 2006.
doi:10.1163/156939306776930259

20. Mohamed, M. D. A., E. A. Soliman, and M. A. El-Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks," Journal of Electromagnetic Wave and Applications, Vol. 20, 1101-1114, 2006.
doi:10.1163/156939306776930240

21. Yildiz, C., K. Guney, M. Turkmen, and S. Kaya, "Neural models for coplanar stripline synthesis," Progress in Electromagnetics Research, Vol. 69, 127-144, 2007.
doi:10.2528/PIER06120802

22. Ganatsos, T., K. Siakavara, and J. N. Sahalos, "Neural network-based design of EBG surfaces for effective polarization diversity of wireless communications antenna systems," PIERS Online, Vol. 3, 1165-1169, 2007.
doi:10.2529/PIERS070215124728

23. Siakavara, K., "Artificial neural network employment in the design of multilayered microstrip antenna with specified frequency operation," PIERS Online, Vol. 3, 1278-1282, 2007.
doi:10.2529/PIERS070317050916

24. Kabir, H., Y. Wang, M. Yu, and Q. Zhang, "Applications of artificial neural network techniques in microwave filter modeling, optimization and design," PIERS Online, Vol. 3, 1131-1135, 2007.
doi:10.2529/PIERS060907172141

25. Cengiz, Y., F. Gunes, and U. Kilic, "Optimization of a microwave amplifier using neural performance data sheets with a memetic algorithm," PIERS Proceedings, 227-231, August 27–30 2007.

26. Hilberg, W., "From approximations to exact relations for characteristics impedances," IEEE Trans. Microwave Theory Tech., Vol. 17, 259-265, 1969.
doi:10.1109/TMTT.1969.1126946

27. Levenberg, K., "A method for the solution of certain nonlinear problems in least squares," Quart. Appl. Math., Vol. 2, 164-168, 1944.

28. Marquardt, D. W., "An algorithm for least-squares estimation of nonlinear parameters," J. Soc. Ind. Appl. Math., Vol. 11, 431-441, 1963.
doi:10.1137/0111030

29. MacKay, D. J. C., "Bayesian interpolation," Neural Computation, Vol. 4, 415-447, 1992.
doi:10.1162/neco.1992.4.3.415

30. Fletcher, R. and C. M. Reeves, "Function minimization by conjugate gradients," Comput. J., Vol. 7, 149-154, 1964.
doi:10.1093/comjnl/7.2.149

31. Scales, E., Introduction to Non-linear Optimization, Springer-Verlag, New York, 1985.

32. Gill, P. E., W. Murray, and M. H. Wright, Practical Optimization, Academic Press, New York, 1981.