Vol. 1
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2007-11-07
Scattering Analysis of a Printed Dipole Antenna Using PBG Structures
By
Progress In Electromagnetics Research B, Vol. 1, 189-195, 2008
Abstract
A novel broadband design of a printed dipole antenna using PBG (photonic band-gap) structures is proposed and studied in the electromagnetic scattering. The high surface impedance and a frequency gap are used to reduce RCS (radar cross section) across needed frequency range (3.7-4.5 GHz). Because the high surface impedance restrains the surface waves, the obtained results show that RCSis reduced by 15 dB at resonance frequency and radiation characteristics of the antenna at operating frequencies are improved. The method of RCSreduction is suggested, and experimental results are presented.
Citation
Hong-Wei Yuan, Shu-Xi Gong, Xing Wang, and Wen-Tao Wang, "Scattering Analysis of a Printed Dipole Antenna Using PBG Structures," Progress In Electromagnetics Research B, Vol. 1, 189-195, 2008.
doi:10.2528/PIERB07102302
References

1. Lindell, I. V. and A. H. Sihvola, "Perfect electromagnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 19, 861-869, 2005.
doi:10.1163/156939305775468741

2. Liao, S. and R. J. Vernon, "On the image approximation for electromagnetic wave propagation and PEC scattering in cylindrical harmonics," Progress In Electromagnetics Research, Vol. 66, 65-88, 2006.
doi:10.2528/PIER06083002

3. Li, Z. and Y. Rahmat-Samii, "PBG, PMC and PEC ground plane: A case study of dipole antennas," Antennas and Propagation Society International Symposium, IEEE, Vol. 2, 674-677, 2000.

4. Seo, J. and B. Lee, "Performance enhancement of antennas using PBG structures," Antennas and Propagation Society International Symposium, IEEE, Vol. 4, 859-862, 2003.

5. Guida, G., A. de Lustrac, and A. Priou, "An introduction to photonic band gap (pbg) materials," Progress In Electromagnetics Research, Vol. 41, 1-20, 2003.
doi:10.2528/PIER02010801

6. Zheng, L. G. and W. X. Zhang, "Study on bandwidth of 2-D dielectric pbg material," Progress In Electromagnetics Research, Vol. 41, 83-106, 2003.
doi:10.2528/PIER02010804

7. Tarot, A.-C., S. Collardey, and K. Mahdjoubi, "Numerical studies of metallic pbg structures," Progress In Electromagnetics Research, Vol. 41, 133-157, 2003.
doi:10.2528/PIER02010806

8. Sievenpiper, D., L. Zhang, R. F. Jimenez Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surface with a forbidden frequency band," Microwave Theory and Techniques, Vol. 47, 2059-2074, November 1999.
doi:10.1109/22.798001

9. Liu, W.-N., J.-K. Xiao, S. Zhang, and Y. Li, "A novel PBG planar inverted-F antenna for wearable system," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 5, 615-622, 2006.
doi:10.1163/156939306776137737

10. Jaisson, D., "Fast design of a printed dipole antenna with an integrated balan," IEE Proc. --- Microw. Antennas Propag., Vol. 153, No. 4, August 2006.

11. Radisic, V. and Y. Qian, "Novel 2-D photonic bandgap structure for microstrip lines," IEEE Microwave and Guided Wave Lett., Vol. 8, No. 2, 69-71, February 1998.
doi:10.1109/75.658644

12. Engheta, N., W. D. Murphy, V. Rokhlin, and M. S.Vassilious, "The fast multipole method (FMM) for electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 6, June 1992.
doi:10.1109/8.144597

13. Wan, J. X. and C.-H. Liang, "A fast analysis of scattering from microstrip antennas over a wide band," Progress In Electromagnetics Research, Vol. 50, 187-208, 2005.
doi:10.2528/PIER04052801

14. Mallahzadeh, A. R., M. Soleimani, and J. Rashed-Mohassel, "Scattering computation from the target with lossy background," Progress In Electromagnetics Research, Vol. 57, 151-163, 2006.
doi:10.2528/PIER05070503

15. Wang, S., X. Guan, D.Wang, X. Ma, and Y. Su, "Electromagnetic scattering by mixed conducting/dielectric objects using higher-order MOM," Progress In Electromagnetics Research, Vol. 66, 51-63, 2006.
doi:10.2528/PIER06092101

16. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Am., Vol. 52, 116-130, 1962.