Vol. 175
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-09-16
Low-Profile High-Gain Wideband Multi-Resonance Microstrip-Fed Slot Antenna with Anisotropic Metasurface
By
Progress In Electromagnetics Research, Vol. 175, 91-104, 2022
Abstract
In this work, a high-gain and wideband microstrip-fed slot antenna is proposed and investigated, which is composed of an anisotropic metasurface (AMS) and an aperture coupled structure. The proposed microstrip antenna with four resonances can be obtained by merging the AMS with an anomalous inverted π-slot feed structure in a low profile (1.07λ0×1.07λ0×0.06λ0). The simulated results indicate that the proposed microstrip antenna can achieve a wide impedance bandwidth of 56.1% from 3.32 to 5.91 GHz, which is verified by experiment. In addition, the measured results show that the peak gain of the proposed microstrip-fed slot antenna is 10.7 dBi at 5.3 GHz, and the relative bandwidth of 3-dBi gain is 42.2% from 3.85 to 5.91 GHz. Compared with previous works, the proposed design has a lower profile while achieving a much wider operating bandwidth, where the four controllable resonance modes offer more possibilities for band expansion. This work shows potential application in integration with high data rate systems.
Citation
Enyu Zhou, Yongzhi Cheng, Fu Chen, Hui Luo, and Xiangcheng Li, "Low-Profile High-Gain Wideband Multi-Resonance Microstrip-Fed Slot Antenna with Anisotropic Metasurface," Progress In Electromagnetics Research, Vol. 175, 91-104, 2022.
doi:10.2528/PIER22062201
References

1. Park, J., M. Jeong, N. Hussain, S. Rhee, S. Park, and N. Kim, "A low-profile high-gain filtering antenna for fifth generation systems based on nonuniform metasurface," Microw. Opt. Technol. Lett., Vol. 61, 2513, 2019.
doi:10.1002/mop.31931

2. Salhi, R., M. Labidi, M. A. Boujemaa, and F. Choubani, "Dual-band microstrip patch antenna based on metamaterial refractive surface," Appl. Phys. A --- Mater., Vol. 123, 420, 2017.
doi:10.1007/s00339-017-1030-2

3. Schaubert, D. H., D. M. Pozar, and A. Adrian, "Effect of microstrip antenna substrate thickness and permittivity: Comparison of theories and experiment," IEEE T. Antenn. Propag., Vol. 37, 677, 1989.
doi:10.1109/8.29353

4. Tian, C., Y. C. Jiao, G. Zhao, and H.Wang, "A wideband transmit array using triple-layer elements combined with cross slots and double square rings," IEEE Antenn. Wirel. Pr., Vol. 16, 1561, 2017.
doi:10.1109/LAWP.2017.2651027

5. Carolina, M. S., A. P. Feresidis, and G. Goussetis, "Bandwidth enhancement of 2-D leaky-wave antennas with double-layer periodic surfaces," IEEE T. Antenn. Propag., Vol. 62, 586, 2014.
doi:10.1109/TAP.2013.2292076

6. Xu, K. D., D. T. Li, Y. H. Liu, and Q. H. Liu, "Printed quasi-yagi antennas using double dipoles and stub-loaded technique for multi-band and broadband applications," IEEE Access, Vol. 6, 31695, 2018.
doi:10.1109/ACCESS.2018.2838328

7. Rengasamy, R., D. Dhanasekaran, C. Chakraborty, and S. Ponnan, "Modified Minkowski fractal multiband antenna with circular-shaped split-ring resonator for wireless applications," Measurement, Vol. 182, 109766, 2021.
doi:10.1016/j.measurement.2021.109766

8. Gupta, R. K. and J. Mukherjee, "Efficient high gain with low sidelobe level antenna structures using circular array of square parasitic patches on a superstrate layer," Microw. Opt. Technol. Lett., Vol. 52, 2812, 2010.
doi:10.1002/mop.25613

9. Zhang, X. and L. Zhu, "Gain-enhanced patch antennas with loading of shorting pins," IEEE T. Antenn. Propag., Vol. 64, 3310, 2016.
doi:10.1109/TAP.2016.2573860

10. Bai, H., G. M. Wang, and X. J. Zou, "A wideband and multi-mode metasurface antenna with gain enhancement," AEU --- Int. J. Electron. C., Vol. 126, 153402, 2020.
doi:10.1016/j.aeue.2020.153402

11. Das, S. and S. Sahu, "Polarization reconfigurability enabled metamaterial inspired dielectric resonator based Fabry-Perot resonator cavity antenna with high gain and bandwidth," Int. J. RF Microw. C. E., Vol. 31, e22603, 2021.

12. Cao, Y. F., Y. Cai, W. Q. Cao, B. K. Xi, Z. P. Qian, T. Wu, and L. Zhu, "Broadband and high-gain microstrip patch antenna loaded with parasitic mushroom-type structure," IEEE Antenn. Wirel. Pr., Vol. 18, 1405, 2019.
doi:10.1109/LAWP.2019.2917909

13. Cheng, Y. Z., F. Chen, and H. Luo, "Plasmonic chiral metasurface absorber based on bilayer fourfold twisted semicircle nanostructure at optical frequency," Nanoscale Res. Lett., Vol. 16, 12, 2021.
doi:10.1186/s11671-021-03474-6

14. Gao, G. P., C. Yang, B. Hu, S. F. Wang, and R. F. Zhang, "Design of a high-gain and low-profile quasi-Cassegrain antenna based on metasurfaces," IEEE Antenn. Wirel. Pr., Vol. 17, 1435, 2018.
doi:10.1109/LAWP.2018.2848920

15. Li, H. P., G. M. Wang, H. X. Xu, T. Cai, and J. G. Liang, "X-band phasegradient metasurface for high-gain lens antenna application," IEEE T. Antenn. Propag., Vol. 63, 5144, 2015.
doi:10.1109/TAP.2015.2475628

16. Tong, X. Y., X. B. Zhao, F. Wei, L. Xu, and R. Li, "Broadband folded reflectarray based on single-layer subwavelength elements using discrete phase control," Int. J. Rf Microw. C. E., Vol. 31, e22710, 2021.

17. Yang, Z. Z., F. Liang, Y. Yi, D. S. Zhao, and B. Z.Wang, "Metasurface-based wideband, low-profile, and high-gain antenna," IET Microw. Antenna P., Vol. 13, 436, 2018.
doi:10.1049/iet-map.2018.5111

18. Zhou, E. Y., Y. Z. Cheng, F. Chen, and H. Luo, "Wideband and high-gain patch antenna with re ective focusing metasurface," AEU --- Int. J. Electron. C., Vol. 134, 153709, 2021.
doi:10.1016/j.aeue.2021.153709

19. Yue, T., Z. H. Jiang, and D. H. Werner, "Compact, wideband antennas enabled by interdigitated capacitor-loaded metasurfaces," IEEE T. Antenn. Propag., Vol. 64, 1595, 2016.
doi:10.1109/TAP.2016.2535499

20. Asadpor, L., G. Sharifi, and M. Rezvani, "Design of a high-gain wideband antenna using double-layer metasurface," Microw. Opt. Technol. Lett., Vol. 61, 1004, 2018.
doi:10.1002/mop.31697

21. Majumder, L., K. Krishnamoorthy, J. Mukherjee, and K. P. Ray, "Compact broadband directive slot antenna loaded with cavities and single and double layers of metasurfaces," IEEE T. Antenn. Propag., Vol. 64, 4595, 2016.
doi:10.1109/TAP.2016.2601346

22. Ma, S. B., H. Q. Zhai, Z. C. Wei, X. Y. Zhou, L. C. Zheng, and J. X. Li, "A high-selectivity dual-polarization filtering antenna with metamaterial for 5G application," Microw. Opt. Technol. Lett., Vol. 61, 63, 2018.
doi:10.1002/mop.31525

23. Pan, Y. M., P. F. Hu, X. Y. Zhang, and S. Y. Zheng, "A low-profile high-gain and wideband filtering antenna with metasurface," IEEE T. Antenn. Propag., Vol. 64, 2010, 2016.
doi:10.1109/TAP.2016.2535498

24. Wu, T., J. Chen, and M. J. Wang, "Multi-state circularly polarized antenna based on the polarization conversion metasurface with gain enhancement," IEEE Access, Vol. 8, 84660, 2020.
doi:10.1109/ACCESS.2020.2992313

25. Rajanna, P. K. T., K. Rudramuni, and K. Kandasamy, "A high gain circularly polarized antenna using zero-index metamaterial," IEEE Antenn. Wirel. Pr., Vol. 18, 1129, 2019.
doi:10.1109/LAWP.2019.2910805

26. Hong, T., S. Wang, Z. Y. Liu, and S. X. Gong, "RCS reduction and gain enhancement for the circularly polarized array by polarization conversion metasurface coating," IEEE Antenn. Wirel. Pr., Vol. 18, 167, 2019.
doi:10.1109/LAWP.2018.2884944

27. Fan, J. P., Y. Z. Cheng, and B. He, "High-efficiency ultrathin terahertz geometric metasurface for full-space wavefront manipulation at two frequencies," J. Phys. D: Appl. Phys., Vol. 54, 115101, 2021.
doi:10.1088/1361-6463/abcdd0

28. Cheng, Y. Z., J. P. Fan, H. Luo, and F. Chen, "Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial," IEEE Access, Vol. 8, 7615, 2019.
doi:10.1109/ACCESS.2019.2962299

29. Dwivedi, A. K., A. Sharma, A. K. Singh, and V. Singh, "Metamaterial inspired dielectric resonator MIMO antenna for isolation enhancement and linear to circular polarization of waves," Measurement, Vol. 182, 109681, 2021.
doi:10.1016/j.measurement.2021.109681

30. Liu, W., Z. N. Chen, and X. M. Qing, "Metamaterial-based low-profile broadband mushroom antenna," IEEE T. Antenn. Propag., Vol. 62, 1165, 2013.
doi:10.1109/TAP.2013.2293788

31. Liu, W., Z. N. Chen, and X. M. Qing, "Metamaterial-based low-profile broadband aperture-coupled grid-slotted patch antenna," IEEE T. Antenn. Propag., Vol. 63, 3325, 2015.
doi:10.1109/TAP.2015.2429741

32. Majumder, B., K. Kandasamy, J. Mukherjee, and K. P. Ray, "Wideband compact directive metasurface enabled pair of slot antennas," Electron. Lett., Vol. 51, 1310, 2015.
doi:10.1049/el.2015.1998

33. Bai, H. and G. M. Wang, "A multistate high gain antenna based on metasurface," Int. J. RF Microw. C. E., Vol. 30, e22330, 2020.

34. Sievenpiper, D., L. J. Zhang, and R. F. J. Broas, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE T. Microw. Theory, Vol. 47, 2059, 1999.
doi:10.1109/22.798001

35. Chen, D. X., W. C. Yang, Q. Xue, and W. Q. Che, "Wideband high-gain multiresonance antenna based on polarization-dependent metasurface," Microw. Opt. Technol. Lett., Vol. 63, 638, 2021.
doi:10.1002/mop.32649

36. Wang, J., Y. Cheng, H. Luo, F. Chen, and L. Wu, "High-gain bidirectional radiative circularly polarized antenna based on focusing metasurface," Int. J. Electron. Commun. (AEÜ), Vol. 151, 154222, 2022.
doi:10.1016/j.aeue.2022.154222

37. Cheng, Y. Z., J. Yu, and X. Li, "Tri-band high-efficiency circular polarization convertor based on double-split-ring resonator structures," Appl. Phys. B --- Lasers O., Vol. 128, 1, 2022.
doi:10.1007/s00340-021-07724-4