Vol. 170

Latest Volume
All Volumes
All Issues
2021-01-15

Advanced Progress on Χ(3) Nonlinearity in Chip-Scale Photonic Platforms (Invited Review)

By Zhe Kang, Chao Mei, Luqi Zhang, Zhichao Zhang, Julian Evans, Yunjun Cheng, Kun Zhu, Xianting Zhang, Dongmei Huang, Yuhua Li, Jijun He, Qiang Wu, Binbin Yan, Kuiru Wang, Xian Zhou, Keping Long, Feng Li, Qian Li, Shaokang Wang, Jinhui Yuan, Ping-Kong Alexander Wai, and Sailing He
Progress In Electromagnetics Research, Vol. 170, 17-62, 2021
doi:10.2528/PIER20122108

Abstract

χ(3) nonlinearity enables ultrafast femtosecond scale light-to-light coupling and manipulation of intensity, phase, and frequency. χ(3) nonlinear functionality in micro- and nano-scale photonic waveguides can potentially replace bulky fiber platforms for many applications. In this review, we summarize and comment on the progress on χ(3) nonlinearity in chip-scale photonic platforms, including several focused hot topics such as broadband and coherent sources in the new bands, nonlinear pulse shaping, and all-optical signal processing. An outlook of challenges and prospects on this hot research field is given at the end.

Citation


Zhe Kang, Chao Mei, Luqi Zhang, Zhichao Zhang, Julian Evans, Yunjun Cheng, Kun Zhu, Xianting Zhang, Dongmei Huang, Yuhua Li, Jijun He, Qiang Wu, Binbin Yan, Kuiru Wang, Xian Zhou, Keping Long, Feng Li, Qian Li, Shaokang Wang, Jinhui Yuan, Ping-Kong Alexander Wai, and Sailing He, "Advanced Progress on Χ(3) Nonlinearity in Chip-Scale Photonic Platforms (Invited Review)," Progress In Electromagnetics Research, Vol. 170, 17-62, 2021.
doi:10.2528/PIER20122108
http://jpier.org/PIER/pier.php?paper=20122108

References


    1. Maiman, T. H., "Stimulated optical radiation in ruby," Nature, Vol. 187, No. 4736, 493-494, 1960.
    doi:10.1038/187493a0

    2. Bloembergen, N., Nonlinear Optics, 3rd Printing, 1977.

    3. Woodbury, E. J. and W. K. Ng, "Ruby laser operation in the near IR," Proc. IRE, Vol. 50, 2367, 1962.

    4. Maker, P. D., R. W. Terhune, and C. M. Savage, "Intensity-dependent changes in the refractive index of liquids," Phys. Rev. Lett., Vol. 12, 507-509, 1964.
    doi:10.1103/PhysRevLett.12.507

    5. Chiao, R. Y., C. H. Townes, and B. P. Stoicheff, "Stimulated Brillouin scattering and coherent generation of intense hypersonic waves," Phys. Rev. Lett., Vol. 12, 592-595, 1964.
    doi:10.1103/PhysRevLett.12.592

    6. Carman, R. L., R. Y. Chiao, and P. L. Kelly, "Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification," Phys. Rev. Lett., Vol. 17, 1281-1283, 1966.
    doi:10.1103/PhysRevLett.17.1281

    7. Kao, K. C. and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," Proceedings of the Institution of Electrical Engineers, Vol. 113, No. 7, 1151-1158, IET Digital Library, 1966.
    doi:10.1049/piee.1966.0189

    8. Ippen, E. P., "Low-power quasi-CW Raman oscillator," Appl. Phys. Lett., Vol. 16, 303-305, 1970.
    doi:10.1063/1.1653204

    9. Ippen, E. P. and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett., Vol. 21, 539-541, 1972.
    doi:10.1063/1.1654249

    10. Stolen, R. H., "Phase-matched-stimulated four-photon mixing in silica-fiber waveguides," IEEE J. Quan. Electron., Vol. 11, 100-103, 1975.
    doi:10.1109/JQE.1975.1068571

    11. Stolen, R. H. and C. Lin, "Self-phase-modulation in silica optical fibers," Phys. Rev. A, Vol. 17, 1448-1453, 1978.
    doi:10.1103/PhysRevA.17.1448

    12. Chraplyvy, A. R. and J. Stone, "Measurement of cross phase modulation in coherent wavelength-division multiplexing using injection lasers," Electron. Lett., Vol. 20, No. 24, 996-997, 1984.
    doi:10.1049/el:19840678

    13. Hasegawa, A. and F. Tappert, "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers: I. Anomalous dispersion," Appl. Phys. Lett., Vol. 23, 142-144, 1973.
    doi:10.1063/1.1654836

    14. Mollenauer, L. F., R. H. Stolen, and J. P. Gordon, "Experimental observation of picosecond pulse narrowing and solitons in optical fibers," Phys. Rev. Lett., Vol. 45, 1095-1098, 1980.
    doi:10.1103/PhysRevLett.45.1095

    15. Mollenauer, L. F. and R. H. Stolen, "The soliton laser," Opt. News, Vol. 10, No. 6, 20_2-21, 1984.
    doi:10.1364/ON.10.6.0020_2

    16. Anderson, D. and M. Lisak, "Bandwidth limits due to mutual pulse interaction in optical soliton communication systems," Opt. Lett., Vol. 11, No. 3, 174-176, 1986.
    doi:10.1364/OL.11.000174

    17. Wai, P. K. A., C. R. Menyuk, Y. C. Lee, and H. H. Chen, "Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers," Opt. Lett., Vol. 11, 464-488, 1986.
    doi:10.1364/OL.11.000464

    18. Tai, K., A. Hasegawa, and N. Bekki, "Fission of optical solitons induced by stimulated Raman effect," Opt. Lett., Vol. 13, 392-394, 1988.
    doi:10.1364/OL.13.000392

    19. Mitschke, F. M. and L. F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett., Vol. 11, 659-661, 1986.
    doi:10.1364/OL.11.000659

    20. Corkum, P. B., C. Rolland, and T. Srinivasan-Rao, "Supercontinuum generation in gases," Phys. Rev. Lett., Vol. 57, No. 18, 2268, 1986.
    doi:10.1103/PhysRevLett.57.2268

    21. Birks, T. A., P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures," Electron. Lett., Vol. 31, 1941-1942, 1995.
    doi:10.1049/el:19951306

    22. Bouwmans, G., et al., "Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength," Opt. Express, Vol. 11, No. 14, 1613-1620, 2003.
    doi:10.1364/OE.11.001613

    23. Yusoff, Z., et al., "Raman effects in a highly nonlinear holey fiber: Amplification and modulation," Opt. Lett., Vol. 27, No. 6, 424-426, 2002.
    doi:10.1364/OL.27.000424

    24. Nakajima, K., et al., "Hole-assisted fiber design for small bending and splice losses," IEEE Photon. Technol. Lett., Vol. 15, No. 12, 1737-1739, 2003.
    doi:10.1109/LPT.2003.819723

    25. Vienne, G., et al., "First demonstration of air-silica Bragg fiber," Optical Fiber Communication Conference, Vol. 2, 3, Optical Society of America, 2004.

    26. Habib, M. S., et al., "Single-mode, low loss hollow-core anti-resonant fiber designs," Opt. Express, Vol. 27, No. 4, 3824-3836, 2019.
    doi:10.1364/OE.27.003824

    27. Ferrera, M., et al., "Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures," Nat. Photon., Vol. 2, No. 12, 737, 2008.
    doi:10.1038/nphoton.2008.228

    28. Barrelet, C. J., et al., "Nonlinear mixing in nanowire subwavelength waveguides," Nano Lett., Vol. 11, No. 7, 3022-3025, 2011.
    doi:10.1021/nl201743x

    29. Li, G., et al., "Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects," Opt. Express, Vol. 20, No. 11, 12035-12039, 2012.
    doi:10.1364/OE.20.012035

    30. Solehmainen, K., "Fabrication of microphotonic waveguide components on silicon," VTT Technical Research Centre of Finland, 68, 2007.

    31. Tsang, H. K., et al., "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett., Vol. 80, No. 3, 416-418, 2002.
    doi:10.1063/1.1435801

    32. Astar, W., et al., "Tunable wavelength conversion by XPM in a silicon nanowire, and the potential for XPM-multicasting," J. Lightw. Technol., Vol. 28, No. 17, 2499-2511, 2010.
    doi:10.1109/JLT.2010.2053698

    33. Liang, T. K. and H. K. Tsang, "Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides," IEEE J. Sel. Top. Quant. Electron., Vol. 10, No. 5, 1149-1153, 2004.
    doi:10.1109/JSTQE.2004.835290

    34. Tien, E. K., N. S. Yuksek, F. Qian, and A. O. Boyraz, "Pulse compression and mode locking by using TPA in silicon waveguides," Opt. Express, Vol. 15, No. 10, 6500-6506, 2007.
    doi:10.1364/OE.15.006500

    35. Liang, T. K., et al., "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements," Appl. Phys. Lett., Vol. 81, No. 7, 1323-1325, 2002.
    doi:10.1063/1.1500430

    36. Reitze, D. H., et al., "Two-photon spectroscopy of silicon using femtosecond pulses at above-gap frequencies," J. Opt. Soc. Am. B, Vol. 7, No. 1, 84-89, 1990.
    doi:10.1364/JOSAB.7.000084

    37. Eggleton, B. J., B. Luther-Davies, and K. Richardson, "Chalcogenide photonics," Nat. Photon., Vol. 5, No. 3, 141, 2011.
    doi:10.1038/nphoton.2011.309

    38. Monat, C., et al., "Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides," Opt. Express, Vol. 17, No. 4, 2944-2953, 2009.
    doi:10.1364/OE.17.002944

    39. Carletti, L., et al., "Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared," Opt. Express, Vol. 23, No. 7, 8261-8271, 2015.
    doi:10.1364/OE.23.008261

    40. Ramirez, J. M., et al., "Ge-rich graded-index Si1−xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics," Opt. Express, Vol. 25, No. 6, 6561-6567, 2017.
    doi:10.1364/OE.25.006561

    41. Carletti, L., et al., "Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses," Opt. Express, Vol. 23, No. 25, 32202-32214, 2015.
    doi:10.1364/OE.23.032202

    42. Moss, J. D., et al., "New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics," Nat. Photon., Vol. 7, No. 8, 597-607, 2013.
    doi:10.1038/nphoton.2013.183

    43. Liu, J., et al., "Ultralow-power chip-based soliton microcombs for photonic integration," Optica, Vol. 5, No. 10, 1347-1353, 2018.
    doi:10.1364/OPTICA.5.001347

    44. Stern, B., et al., "Battery-operated integrated frequency comb generator," Nature, Vol. 562, No. 7727, 401-405, 2018.
    doi:10.1038/s41586-018-0598-9

    45. Shen, B., et al., "Integrated turnkey soliton microcombs," Nature, Vol. 582, 365-369, 2020.
    doi:10.1038/s41586-020-2358-x

    46. Choi, J. W., et al., "Nonlinear characterization of GeSbS chalcogenide glass waveguides," Sci. Rep., Vol. 6, No. 1, 1-8, 2016.
    doi:10.1038/s41598-016-0001-8

    47. Ta’eed, V. G., et al., "All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides," Opt. Express, Vol. 14, No. 23, 11242-11247, 2006.
    doi:10.1364/OE.14.011242

    48. Yeom, D. I., et al., "Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires," Opt. Lett., Vol. 33, No. 7, 660-662, 2008.
    doi:10.1364/OL.33.000660

    49. Ta’eed, V. G., et al., "Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides," IEEE J. Sel. Top. Quant. Electron., Vol. 12, No. 3, 360-370, 2006.
    doi:10.1109/JSTQE.2006.872727

    50. Siviloglou, G. A., et al., "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express, Vol. 14, No. 20, 9377-9384, 2006.
    doi:10.1364/OE.14.009377

    51. Inoue, K., et al., "Enhanced third-order nonlinear effects in slowlight photonic-crystal slab waveguides of line defect," Opt. Express, Vol. 17, No. 9, 7206-7216, 2009.
    doi:10.1364/OE.17.007206

    52. Moille, G., et al., "Dissipative Kerr Solitons in a III-V microresonator," Laser & Photon. Rev., Vol. 14, No. 8, 2070043, 2020.
    doi:10.1002/lpor.202070043

    53. Combrie, S., et al., "High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption," Appl. Phys. Lett., Vol. 95, No. 22, 221108, 2009.
    doi:10.1063/1.3269998

    54. Xiong, C., et al., "Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics," New J. Phys., Vol. 14, No. 9, 095014, 2012.
    doi:10.1088/1367-2630/14/9/095014

    55. Munk, D., et al., "Four-wave mixing and nonlinear parameter measurement in a gallium-nitride ridge waveguide," Opt. Mater. Express, Vol. 8, No. 1, 66-72, 2018.
    doi:10.1364/OME.8.000066

    56. Pu, M., et al., "Broadband optical signal processing in AlGaAs-on-insulator waveguides," Integrated Photonics Research, Silicon and Nanophotonics, Optical Society of America, ITu2A.1, 2020.

    57. Chang, L., et al., "Ultra-efficient frequency comb generation in AlGaAs-oninsulator microresonators," Nat. Commun., Vol. 11, No. 1, 1-8, 2020.
    doi:10.1038/s41467-019-13993-7

    58. Gaeta, A. L., M. Lipson, and T. J. Kippenberg, "Photonic-chip-based frequency combs," Nat. Photon., Vol. 13, No. 3, 158-169, 2019.
    doi:10.1038/s41566-019-0358-x

    59. Dudley, J. M., G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys., Vol. 78, No. 4, 1135, 2006.
    doi:10.1103/RevModPhys.78.1135

    60. Lin, Q., O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: Modeling and applications," Opt. Express, Vol. 15, No. 25, 16604-16644, 2007.
    doi:10.1364/OE.15.016604

    61. Dudley, J. M. and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett., Vol. 27, No. 13, 1180-1182, 2002.
    doi:10.1364/OL.27.001180

    62. Raabe, N., et al., "Role of Intrapulse coherence in carrier-envelope phase stabilization," Phys. Rev. Lett., Vol. 119, No. 12, 123901, 2017.
    doi:10.1103/PhysRevLett.119.123901

    63. Mei, C. and G. Steinmeyer, "Tailoring the waveguide dispersion of nonlinear fibers for supercontinuum generation with superior intrapulse coherence," J. Opt. Soc. Am. B, Vol. 37, No. 8, 2485-2497, 2020.
    doi:10.1364/JOSAB.396511

    64. Oh, D. Y., et al., "Coherent ultra-violet to near-infrared generation in silica ridge waveguides," Nat. Commun., Vol. 8, No. 1, 1-7, 2017.
    doi:10.1038/s41467-019-13993-7

    65. Liu, X., et al., "Beyond 100THz-spanning ultraviolet frequency combs in a non-centrosymmetric crystalline waveguide," Nat. Commun., Vol. 10, No. 1, 2971, 2019.
    doi:10.1038/s41467-019-11034-x

    66. Lafforgue, C., et al., "Broadband supercontinuum generation in nitrogen-rich silicon nitride waveguides using a 300 mm industrial platform," Photon. Res., Vol. 8, No. 3, 2020.
    doi:10.1364/PRJ.379555

    67. Genty, G., S. Coen, and J. M. Dudley, "Fiber supercontinuum sources," J. Opt. Soc. Am. B, Vol. 24, No. 8, 1771-1785, 2007.
    doi:10.1364/JOSAB.24.001771

    68. Johnson, A. R., et al., "Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide," Opt. Lett., Vol. 40, No. 21, 5117-5120, 2015.
    doi:10.1364/OL.40.005117

    69. Okawachi, Y., et al., "Coherent, directional supercontinuum generation," Opt. Lett., Vol. 42, No. 21, 4466-4469, 2017.
    doi:10.1364/OL.42.004466

    70. Kuyken, B., et al., "Octave-spanning coherent supercontinuum generation in an AlGaAs-on-insulator waveguide," Opt. Lett., Vol. 45, No. 3, 603-606, 2020.
    doi:10.1364/OL.45.000603

    71. Tremblay, J., et al., "Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides," Opt. Express, Vol. 26, No. 16, 21358-21363, 2018.
    doi:10.1364/OE.26.021358

    72. Dave, U. D., et al., "Dispersive-wave-based octave-spanning supercontinuum generation in InGaP membrane waveguides on a silicon substrate," Opt. Lett., Vol. 40, No. 15, 3584-3587, 2015.
    doi:10.1364/OL.40.003584

    73. Singh, N., et al., "Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm," Light Sci. Appl., Vol. 7, No. 1, 17131-17131, 2018.
    doi:10.1038/lsa.2017.131

    74. Kou, R., et al., "Mid-IR broadband supercontinuum generation from a suspended silicon waveguide," Opt. Lett., Vol. 43, No. 6, 1387, 2018.
    doi:10.1364/OL.43.001387

    75. Chiles, J., et al., "Multi-functional integrated photonics in the mid-infrared with suspended AlGaAs on silicon," Optica, Vol. 6, No. 9, 1246-1254, 2019.
    doi:10.1364/OPTICA.6.001246

    76. Nader, N., et al., "Infrared frequency comb generation and spectroscopy with suspended silicon nanophotonic waveguides," Optica, Vol. 6, No. 10, 1269, 2019.
    doi:10.1364/OPTICA.6.001269

    77. Lau, R. K. W., et al., "Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides," Opt. Lett., Vol. 39, No. 15, 4518-4521, 2014.
    doi:10.1364/OL.39.004518

    78. Xie, S., et al., "octave-spanning mid-infrared supercontinuum generated in As2S3-silica double-nanospike waveguide pumped by femtosecond Cr: ZnS laser," Opt. Express, Vol. 24, No. 11, 12406-12413, 2016.
    doi:10.1364/OE.24.012406

    79. Sinobad, M., et al., "Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides," Optica, Vol. 5, No. 4, 360, 2018.

    80. Sinobad, M., et al., "High coherence at f and 2f of mid-infrared supercontinuum generation in silicon germanium waveguides," IEEE J. Sel. Top. Quant. Electron., Vol. 26, No. 2, 1-8, 2019.

    81. Yang, M., et al., "Mid-IR supercontinuum generated in low-dispersion Ge-on-Si waveguides pumped by sub-ps pulses," Opt. Express, Vol. 25, No. 14, 16116, 2017.

    82. Yuan, J., et al., "Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide," J. Lightw. Technol., Vol. 35, 2994-3002, 2017.

    83. Jing, S., et al., "Broadband and highly coherent supercontinuum generation in a suspended As2S3 ridge waveguide," Opt. Commun., Vol. 428, 227-232, 2018.

    84. Cheng, Y., et al., "Self-similar picosecond pulse compression for supercontinuum generation at mid-infrared wavelength in silicon strip waveguides," Opt. Commun., Vol. 454, 124380, 2019.

    85. Li, Z., et al., "Multi-octave mid-infrared supercontinuum and frequency comb generation in a suspended As2Se3 ridge waveguide," Appl. Opt., Vol. 58, No. 31, 8404-8410, 2019.

    86. Lai, J., et al., "Dispersion-engineered T-type germanium waveguide for mid-infrared supercontinuum and frequency comb generations in all-normal dispersion region," OSAC, Vol. 3, No. 9, 2320-2331, 2020.

    87. Yu, M., et al., "Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides," Opt. Lett., Vol. 44, 1222-1225, 2019.

    88. Lu, J., et al., "Ultraviolet to mid-infrared supercontinuum generation in single-crystalline aluminum nitride waveguides," Opt. Lett., Vol. 45, No. 16, 4499-4502, 2020.

    89. Gaeta, A. L., M. Lipson, and T. J. Kippenberg, "Photonic-chip-based frequency combs," Nat. Photonics, Vol. 13, 158-169, 2019.

    90. Hon, N. K., R. Soref, and B. Jalali, "The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the mid-wave and longwave infrared," J. Appl. Phys., Vol. 110, 011301, 2011.

    91. Wang, T., N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, and D. T. H. Tan, "Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths," Opt. Express, Vol. 21, 32192-32198, 2013.

    92. Shen, L., N. Healy, P. Mehta, T. D. Day, J. R. Sparks, J. V. Badding, and A. C. Peacock, "Nonlinear transmission properties of hydrogenated amorphous silicon core fibers towards the mid-infrared regime," Opt. Express, Vol. 21, 13075-13083, 2013.

    93. Carletti, L., M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, "Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses," Opt. Express, Vol. 23, 32202-32214, 2015.

    94. Agrawal, G. P., Nonlinear Fiber Optics, Nonlinear Science at the Dawn of the 21st Century, 195-211, Springer, Berlin, Heidelberg, 2000.

    95. Tan, D. T. H., et al., "Group velocity dispersion and self-phase modulation in silicon nitride waveguides," Appl. Phys. Lett., Vol. 96, 061101, 2010.

    96. Levy, J. S., et al., "CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects," Nat. Photonics, Vol. 4, 37-40, 2010.

    97. Cardenas, J., et al., "Parametric frequency conversion in silicon carbide waveguides," CLEO: Science and Innovations, 1-3, Optical Society of America, 2015.

    98. Jung, H., C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, "Optical frequency comb generation from aluminum nitride microring resonator," Opt. Lett., Vol. 38, 2810-2813, 2013.

    99. Belt, M., M. L. Davenport, J. E. Bowers, and D. J. Blumenthal, "Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates," Optica, Vol. 4, 532-536, 2017.

    100. Guan, X., H. Hu, L. K. Oxenløwe, and L. H. Frandsen, "Compact titanium dioxide waveguides with high nonlinearity at telecommunication wavelengths," Opt. Express, Vol. 26, No. 2, 1055-1063, 2018.

    101. Hausmann, B. J. M., et al., "Diamond nonlinear photonics," Nat. Photonics, Vol. 8, 369-374, 2014.

    102. Pu, M., et al., "Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing," Laser & Photon. Rev., Vol. 12, 1800111, 2018.

    103. Dolgaleva, K., W. C. Ng, L. Qian, and J. S. Aitchison, "Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion," Opt. Express, Vol. 19, 12440-12455, 2011.

    104. Xiang, B.-X., et al., "Supercontinuum generation in lithium niobate ridge waveguides fabricated by proton exchange and ion beam enhanced etching," Chinese Phys. Lett., Vol. 34, No. 2, 24203-024203, 2017.

    105. Fan, Z., K. Yan, L. Zhang, J. Qin, J. Chen, R. Wang, and X. Shen, "Design and fabrication of As2Se3 chalcogenide waveguides with low optical losses," Appl. Opt., Vol. 59, 1564-1568, 2020.

    106. Al-kadry, A., C. Baker, M. El Amraoui, Y. Messaddeq, and M. Rochette, "Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effects," Opt. Lett., Vol. 38, 1185-1187, 2013.

    107. Duchesne, D., et al., "Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides," Opt. Express, Vol. 17, No. 3, 1865-1870, 2009.

    108. Kuyken, B., et al., "An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide," Nat. Commun., Vol. 6, No. 1, 1-6, 2015.

    109. Carlson, D. R., et al., "Self-referenced frequency combs using high-efficiency silicon-nitride waveguides," Opt. Lett., Vol. 42, No. 12, 2314-2317, 2017.

    110. Lee, K. F., et al., "Mid-infrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation," Opt. Lett., Vol. 39, No. 7, 2056-2059, 2014.

    111. Guo, H., et al., "Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides," Nat. Photon., Vol. 12, No. 6, 330-335, 2018.

    112. Guo, H., et al., "Nanophotonic supercontinuum based mid-infrared dual-comb spectroscopy," Optica, Vol. 7, 1181-1188, 2020.

    113. Grassani, D., et al., "Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum," Nat. Commun., Vol. 10, No. 1, 1553, 2019.

    114. Tagkoudi, E., et al., "Parallel gas spectroscopy using mid-infrared supercontinuum from a single Si3N4 waveguide," Opt. Lett., Vol. 45, No. 7, 2195-2198, 2020.

    115. Jung, H., et al., "Green, red and IR frequency comb line generation from single IR pump in AlN microring resonator," Optica, Vol. 1, No. 6, 396-399, 2014.

    116. Kippenberg, T. J., et al., "Dissipative Kerr solitons in optical microresonators," Science, Vol. 361, eaan8083, 2018.

    117. Haelterman, M., S. Trillo, and S. Wabnitz, "Dissipative modulation instability in a nonlinear dispersive ring cavity," Opt. Commun., Vol. 91, No. 5–6, 401-407, 1992.

    118. Kang, Z., et al., "Deterministic generation of single soliton Kerr frequency comb in microresonators by a single shot pulsed trigger," Opt. Express, Vol. 26, No. 14, 18563-18577, 2018.

    119. Coen, S., et al., "Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model," Opt. Lett., Vol. 38, 37-39, 2013.

    120. Lau, R. K. W., et al., "Effects of multiphoton absorption on parametric comb generation in silicon microresonators," Opt. Lett., Vol. 40, No. 12, 2778-2781, 2015.

    121. Bao, C., et al., "Soliton breathing induced by stimulated Raman scattering and self-steepening in octave-spanning Kerr frequency comb generation," Opt. Express, Vol. 23, No. 14, 18665-18670, 2015.

    122. Liu, X., et al., "Generation of multiple near-visible comb lines in an AlN microring via χ(2) and χ(3) optical nonlinearities," Appl. Phys. Lett., Vol. 113, No. 17, 171106, 2018.

    123. Wang, L., et al., "Frequency comb generation in the green using silicon nitride microresonators," Laser & Photonics Rev., Vol. 10, No. 4, 631-638, 2016.

    124. Guo, X., et al., "Efficient generation of a near-visible frequency comb via Cherenkov-like radiation from a Kerr microcomb," Phys. Rev. Appl., Vol. 10, No. 1, 014012, 2018.

    125. Lee, S. H., et al., "Towards visible soliton microcomb generation," Nat. Commun., Vol. 8, No. 1, 1295, 2017.

    126. Raja, A. S., et al., "Electrically pumped photonic integrated soliton microcomb," Nat. Commun., Vol. 10, No. 1, 1-16, 2019.

    127. Briles, T. C., et al., "Generating octave-bandwidth soliton frequency combs with compact, low-power semiconductor lasers," Phys. Rev. Appl., Vol. 14, No. 1, 014006, 2020.

    128. Fujii, L., et al., "Dispersion tailoring in wedge microcavities for Kerr comb generation," Opt. Lett., Vol. 45, No. 12, 3232-3235, 2020.

    129. Yu, M., et al., "Mode-locked mid-infrared frequency combs in a silicon microresonator," Optica, Vol. 3, No. 8, 854-860, 2016.

    130. Yu, M., et al., "Silicon-chip-based mid-infrared dual-comb spectroscopy," Nat. Commun., Vol. 9, No. 1, 1869, 2018.

    131. Yu, M., et al., "Microfluidic mid-infrared spectroscopy via microresonator-based dual-comb source," Opt. Lett., Vol. 44, No. 17, 4259-4262, 2019.

    132. Gong, Z., et al., "Soliton microcomb generation at 2 μm in z-cut lithium niobate microring resonators," Opt. Lett., Vol. 44, No. 12, 3182, 2019.

    133. Guo, Y., et al., "Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator," Nanophotonics, Vol. 7, No. 8, 1461-1467, 2018.

    134. Fan, W., et al., "Low-threshold 4/5 octave-spanning mid-infrared frequency comb in a LiNbO3 microresonator," IEEE Photonics J., Vol. 11, No. 6, 1-7, 2019.

    135. Anashkina, E. A., et al., "Numerical simulation of mid-infrared optical frequency comb generation in chalcogenide As2S3 microbubble resonators," Photonics, Vol. 6, No. 2, 55, 2019.

    136. Lamb, E. S., et al., "Optical-frequency measurements with a Kerr-microcomb and photonic-chip supercontinuum," Phys. Rev. Appl., Vol. 9, No. 2, 024030, 2018.

    137. Signorini, S., et al., "Are on-chip heralded single photon sources possible by intermodal four wave mixing in silicon waveguides," Quantum Photonic Devices, Vol. 10733, 107330G, 2018.

    138. Signorini, S., et al., "Intermodal four-wave mixing in silicon waveguides," Photon. Res., Vol. 6, No. 8, 805-814, 2018.

    139. Lacava, C., , et al., "Intermodal bragg-scattering four wave mixing in silicon waveguides," J. Lightw. Technol., Vol. 37, No. 7, 1680-1685, 2019.

    140. Lacava, C., et al., "Intermodal frequency generation in silicon-rich silicon nitride waveguides," Photon. Res., Vol. 7, 615-621, 2019.

    141. Guo, H., et al., "Intermode breather solitons in optical microresonators," Phys. Rev. X, Vol. 7, No. 4, 041055, 2017.

    142. Boscolo, S., A. I. Latkin, and S. K. Turitsyn, "Passive nonlinear pulse shaping in normally dispersive fiber systems," J. Quantum Elect., Vol. 44, No. 12, 1196-1203, 2008.

    143. Boscolo, S. and C. Finot, "Nonlinear pulse shaping in fibers for pulse generation and optical processing," International Journal of Optics, 2012.

    144. Luo, A., et al., "Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser," Photon. Res., Vol. 3, No. 2, A69-A78, 2015.

    145. Boscolo, S. and C. Finot, "Artificial neural networks for nonlinear pulse shaping in optical fibers,", arXiv preprint arXiv:2002.08815, 2020.

    146. Boscolo, S. and C. Finot, "Nonlinear pulse shaping in optical fibres with a neural network," Nonlinear Photonics, NpTu1E. 1, Optical Society of America, 2020.

    147. Ataie, V., et al., "Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping," J. Lightw. Technol., Vol. 32, No. 4, 840-846, 2014.

    148. Weiner, A. M., "Ultrafast optical pulse shaping: A tutorial review," Opt. Commun., Vol. 284, No. 15, 3669-3692, 2011.

    149. Wang, D., et al., "Performance optimization of ultra-short optical pulse generation based on Mamyshev reshaping and its application in 100-Gb/s and 200-Gb/s optical time-division multiplexing," Opt. Commun., Vol. 364, 76-82, 2016.

    150. Mitrofanov, A. V., et al., "Ultraviolet-to-millimeter-band supercontinua driven by ultrashort mid-infrared laser pulses," Optica, Vol. 7, No. 1, 15-19, 2020.

    151. Maiuri, M., M. Garavelli, and G. Cerullo, "Ultrafast spectroscopy: State of the art and open challenges," J. Am. Chem. Soc., Vol. 142, No. 1, 3-15, 2019.

    152. Mitra, K. and S. Miller, Short Pulse Laser Systems for Biomedical Applications, Springer, Germany, 2017.

    153. Treacy, E., "Optical pulse compression with diffraction gratings," IEEE J. Quant. Electron., Vol. 5, No. 9, 454-458, 1969.

    154. Mei, C., et al., "Self-similar propagation and compression of the parabolic pulse in silicon waveguide," J. Lightw. Technol., Vol. 37, No. 9, 1990-1999, 2019.

    155. Tan, D. T. H., P. C. Sun, and Y. Fainman, "Monolithic nonlinear pulse compressor on a silicon chip," Nat. Commun., Vol. 1, No. 1, 1-6, 2010.

    156. Colman, P., et al., "Temporal solitons and pulse compression in photonic crystal waveguides," Nat. Photon., Vol. 4, No. 12, 862-868, 2010.

    157. Sahin, E., et al., "Bragg soliton compression and fission on CMOS-compatible ultra-silicon-rich nitride," Laser & Photon. Rev., Vol. 13, 1900114, 2019.

    158. Choi, J. W., et al., "Sub-ps optical pulse compression in ultra-silicon-rich nitride waveguides," Nonlinear Optics, NM3B. 4, OSA, 2019.

    159. Redondo, A. B., et al., "Observation of soliton compression in silicon photonic crystals," Nat. Commun., Vol. 5, No. 1, 1-8, 2014.

    160. Amine, B. S., C. Rim, and Z. Mourad, "Soliton-self compression in highly nonlinear chalcogenide photonic nanowires with ultralow pulse energy," Opt. Express, Vol. 19, No. 21, 19955-19966, 2011.

    161. Lavdas, S., et al., "Pulse compression in adiabatically tapered silicon photonic wires," Opt. Express, Vol. 22, No. 6, 6296-6312, 2014.

    162. Li, Q., et al., "Modeling self-similar optical pulse compression in nonlinear fiber Bragg grating using coupled-mode equations," J. Lightw. Technol., Vol. 29, No. 9, 1293-1305, 2011.

    163. Kruglov, V. I., A. C. Peacock, and J. D. Harvey, "Exact solutions of the generalized nonlinear Schrodinger equation with distributed coefficients," Phys. Rev. E, Vol. 71, No. 5, 056619, 2005.

    164. Li, F., et al., "Highly coherent supercontinuum generation with picosecond pulses by using self-similar compression," Opt. Express, Vol. 22, No. 22, 27339-27354, 2014.

    165. Mei, C., et al., "High degree picosecond pulse compression in chalcogenide-silicon slot waveguide taper," J. Lightw. Technol., Vol. 34, No. 16, 3843-3852, 2016.

    166. Huang, J., M. S. A. Gandhi, and Q. Li, "Self-similar chirped pulse compression in the tapered silicon ridge slot waveguide," IEEE J. Sel. Top. Quant. Electron., Vol. 26, No. 2, 1-8, 2019.

    167. Yuan, J., et al., "Mid-infrared self-similar compression of picosecond pulse in an inversely tapered silicon ridge waveguide," Opt. Express, Vol. 25, No. 26, 33439-33450, 2017.

    168. Cheng, Y., et al., "Self-similar picosecond pulse compression for supercontinuum generation at mid-infrared wavelength in silicon strip waveguides," Opt. Commun., Vol. 454, 124380, 2020.

    169. Kang, Z., et al., "Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques," Chinese Phys. B, Vol. 22, No. 11, 114211, 2013.

    170. Huber, R., M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML, A new laser operating regime and applications for optical coherence tomography," Opt. Express, Vol. 14, No. 8, 3225-3237, 2006.

    171. Andresen, E. R., et al., "Tunable light source for coherent anti-Stokes Raman scattering micro spectroscopy based on the soliton self-frequency shift," Opt. Lett., Vol. 31, No. 9, 1328-1330, 2006.

    172. Chuang, H. P. and C. B. Huang, "Wavelength-tunable spectral compression in a dispersion-increasing fiber," Opt. Lett., Vol. 36, No. 15, 2848-2850, 2011.

    173. Andresen, E. R., J. Thøgersen, and S. R. Keiding, "Spectral compression of femtosecond pulses in photonic crystal fibers," Opt. Lett., Vol. 30, No. 15, 2025-2027, 2005.

    174. Mei, C., et al., "Chirp-free spectral compression of parabolic pulses in silicon nitride channel waveguides," 2016 21st Opto Electronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 1-3, IEEE, 2016.

    175. Mei, C., et al., "Efficient spectral compression of wavelength-shifting soliton and its application in integratable all-optical quantization," IEEE Photonics J., Vol. 11, No. 1, 1-15, 2019.

    176. Cheng, Y., et al., "Mid-infrared spectral compression of soliton pulse in an adiabatically suspended silicon waveguide taper," IEEE Photonics J., Vol. 11, No. 4, 4500911, 2019.

    177. Fermann, M. E., et al., "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett., Vol. 84, No. 26, 6010, 2000.

    178. Limpert, J., et al., "High-power femtosecond Yb-doped fiber amplifier," Opt. Express, Vol. 10, No. 14, 628-638, 2002.

    179. Ozeki, Y., et al., "High repetition-rate similariton generation in normal dispersion erbium-doped fiber amplifiers and its application to multi-wavelength light sources," IEICE T. Electron., Vol. 88, No. 5, 904-911, 2005.

    180. Finot, C., et al., "Experimental generation of parabolic pulses via Raman amplification in optical fiber," Opt. Express, Vol. 11, No. 13, 1547-1552, 2003.

    181. Boscolo, S., A. I. Latkin, and S. K. Turitsyn, "Passive nonlinear pulse shaping in normally dispersive fiber systems," IEEE J. Quant. Electron., Vol. 44, No. 12, 1196-1203, 2008.

    182. Kruglov, V. I. and J. D. Harvey, "Asymptotically exact parabolic solutions of the generalized nonlinear Schrodinger equation with varying parameters," J. Opt. Soc. Am. B, Vol. 23, No. 12, 2541-2550, 2006.

    183. Hirooka, T. and M. Nakazawa, "Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion," Opt. Lett., Vol. 29, No. 5, 498-500, 2004.

    184. Jiang, G., et al., "Generation of the self-similar parabolic pulses by designing comb-like profiled dispersion fiber based on alternately arranged single-mode fibers and dispersion-shifted fibers," Optik, Vol. 124, 5328-5331, 2013.

    185. Finot, C., et al., "Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device," Opt. Express, Vol. 15, No. 3, 852-864, 2007.

    186. Lavdas, S., et al., "Generation of parabolic similaritons in tapered silicon photonic wires: Comparison of pulse dynamics at telecom and mid-infrared wavelengths," Opt. Lett., Vol. 38, No. 19, 3953-3956, 2013.

    187. Lavdas, S., et al., "Generation and collision of optical similaritons in dispersion-engineered silicon photonic nanowires," Nanoengineering: Fabrication, Properties, Optics, and Devices X. International Society for Optics and Photonics, Vol. 8816, 8816DJ, 2013.

    188. Mei, C., et al., "Comprehensive analysis of passive generation of parabolic similaritons in tapered hydrogenated amorphous silicon photonic wires," Sci. Rep., Vol. 7, No. 1, 3814-1-14, 2017.

    189. Mei, C., et al., "Generation of parabolic pulse in a dispersion and nonlinearity jointly engineered silicon waveguide taper," Opt. Commun., Vol. 448, 48-54, 2019.

    190. Mei, C., et al., "Passive generation of the multi-wavelength parabolic pulses in tapered silicon nanowires," IEEE Access, Vol. 8, 77631-77641, 2020.

    191. Jones, N., "How to stop data centres from gobbling up the world’s electricity," Nature, Vol. 561, No. 7722, 163-167, 2018.

    192. Minzioni, P., et al., "Roadmap on all-optical processing," J. Opt., Vol. 21, No. 6, 063001, 2019.

    193. Willner, A. E., et al., "All-optical address recognition for optically-assisted routing in next-generation optical networks," IEEE Commun. Mag., Vol. 41, No. 5, S38-S44, 2003.

    194. Mahjoubfar, A., et al., "Time stretch and its applications," Nat. Photon., Vol. 11, No. 6, 341, 2017.

    195. Kang, Z., et al., "Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation," Opt. Express, Vol. 22, No. 18, 21441-21453, 2014.

    196. Tian, Y., et al., "On-chip integratable all-optical quantizer using cascaded step-size MMI," Opt. Express, Vol. 26, No. 3, 2453-2461, 2018.

    197. Valley, G. C., "Photonic analog-to-digital converters," Opt. Express, Vol. 15, No. 5, 1955-1982, 2007.

    198. Miyoshi, Y., S. Namiki, and K. I. Kitayama, "Performance evaluation of resolution-enhanced ADC using optical multiperiod transfer functions of NOLMs," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 18, No. 2, 779-784, 2012.

    199. Andrekson, P. A. and M. Westlund, "Nonlinear optical fiber based high resolution all-optical waveform sampling," Laser & Photonics Rev., Vol. 1, No. 3, 231-248, 2007.

    200. Nuno, J., et al., "All-optical sampling and magnification based on XPM-induced focusing," Opt. Express, Vol. 24, No. 22, 24921-24929, 2016.

    201. Nishitani, T., T. Konishi, and K. Itoh, "Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression," IEEE J. Sel. Top. Quant. Electron., Vol. 14, No. 3, 724-732, 2008.

    202. Li, Y., et al., "CMOS-compatible high-index doped silica waveguide with an embedded silicon-nanocrystal strip for all-optical analog-to-digital conversion," Photon. Res., Vol. 7, No. 10, 1200-1208, 2019.

    203. Bres, C. S., et al., "Multicast parametric synchronous sampling," IEEE Photon. Technol. Lett., Vol. 20, No. 14, 1222-1224, 2008.

    204. Miao, B., et al., "Two-bit optical analog-to-digital converter based on photonic crystals," Opt. Express, Vol. 14, No. 17, 7966-7973, 2006.

    205. Kang, Z., et al., "On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide," Sci. Rep., Vol. 6, No. 1, 1-12, 2016.

    206. Kang, Z., et al., "CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide," Sci. Rep., Vol. 4, No. 1, 1-9, 2014.

    207. Kang, S., et al., "All-optical quantization scheme by slicing the supercontinuum in a chalcogenide horizontal slot waveguide," J. Opt., Vol. 17, No. 8, 085502, 2015.

    208. Kang, X., et al., "Integratable all-optical spectral quantization scheme based on chalcogenide-silicon slot waveguide," Opt. Commun., Vol. 355, 479-484, 2015.

    209. Zhang, J., et al., "All-optical spectral quantization scheme based on cascaded chalcogenide-silicon slot waveguides," Opt. Eng., Vol. 57, No. 4, 045102, 2018.

    210. Keyes, R. W., "Optical logic-in the light of computer technology," Optica Acta: Int. J. Opt., Vol. 32, No. 5, 525-535, 1985.

    211. Tsuda, H. and T. Kurokawa, "Construction of an all-optical flip-flop by combination of two optical triodes," Appl. Phys. Lett., Vol. 57, No. 17, 1724-1726, 1990.

    212. Wang, J. M., et al., "Dual-channel AND logic gate based on four-wave mixing in a multimode silicon waveguide," IEEE Photonics J., Vol. 9, No. 4, 1-6, 2017.

    213. Wu, W., et al., "Influence of two-photon absorption and free-carrier effects on all-optical logic gates in silicon waveguides," Appl. Phys. Express, Vol. 12, 042005, 2019.

    214. Moroney, N., et al., "Logic gates based on interaction of counterpropagating light in microresonators," J. Lightw. Technol., Vol. 38, No. 6, 1414-1419, 2020.

    215. Jandieri, V., R. Khomeriki, and D. Erni, "Realization of true all-optical AND logic gate based on nonlinear coupled air-hole type photonic crystal waveguides," Opt. Express, Vol. 26, No. 16, 19845-19853, 2018.

    216. Kumar, S. and M. Sen, "Integrable all-optical NOT gate using nonlinear photonic crystal MZI for photonic integrated circuit," J. Opt. Soc. Am. B, Vol. 37, No. 2, 359-369, 2020.

    217. Vakhtang, J., et al., "Functional all-optical logic gates for true time-domain signal processing in nonlinear photonic crystal waveguides," Opt. Express, Vol. 28, No. 12, 18317-18331, 2020.

    218. Dimitriadou, E. and K. E. Zoiros, "All-optical XOR gate using single quantum-dot SOA and optical filter," J. Lightw. Technol., Vol. 31, No. 23, 3813-3821, 2013.

    219. Kotb, A., K. E. Zoiros, and C. Guo, "1Tb/s all-optical XOR and AND gates using quantum-dot semiconductor optical amplifier-based turbo-switched Mach-Zehnder interferometer," J. Comput. Electron., Vol. 18, No. 2, 628-639, 2019.

    220. Capmany, J. and D. Novak, "Microwave photonics combines two worlds," Nat. Photon., Vol. 1, No. 6, 319-330, 2007.

    221. Supradeepa, V. R., et al., "Comb-based radio frequency photonic filters with rapid tunability and high selectivity," Nat. Photon., Vol. 6, No. 3, 186-194, 2012.

    222. Li, J., et al., "Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs," Phys. Rev. Lett., Vol. 109, No. 23, 233901, 2012.

    223. Liang, W., et al., "High spectral purity Kerr frequency comb radio frequency photonic oscillator," Nat. Commun., Vol. 6, No. 1, 1-8, 2015.

    224. Nguyen, T. G., et al., "Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis," Opt. Express, Vol. 23, No. 17, 22087-22097, 2015.

    225. Xue, X., et al., "Programmable single-bandpass photonic RF filter based on Kerr comb from a microring," J. Light. Technol., Vol. 32, No. 20, 3557-3565, 2014.

    226. Xu, X., et al., "Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source," Photon. Res., Vol. 6, No. 5, B30-B36, 2018.

    227. Wu, J., et al., "RF photonics: An optical microcombs’ perspective," IEEE J. Sel. Top. Quant. Electron., Vol. 24, No. 4, 1-20, 2018.

    228. Xu, X., et al., "Broadband RF channelizer based on an integrated optical frequency Kerr comb source," J. Lightw. Technol., Vol. 36, No. 19, 4519-4526, 2018.

    229. Hu, J., et al., "Reconfigurable radiofrequency filters based on versatile soliton microcombs," Nat. Commun., Vol. 11, No. 1, 1-9, 2020.

    230. Yu, X., et al., "Third-order optical nonlinearity in nonstoichiometric amorphous silicon carbide films," J. Alloy. Compd., Vol. 794, 518-524, 2019.

    231. Tumuluri, A., et al., "Structural, optical and femtosecond third-order nonlinear optical properties of LiNbO3 thin films," Mater. Res. Bull., Vol. 94, 342-351, 2017.

    232. Sierra, J. H., et al., "Low-loss pedestal Ta2O5 nonlinear optical waveguides," Opt. Express, Vol. 27, No. 26, 37516-37521, 2019.

    233. Zhang, L., et al., "Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation," Opt. Express, Vol. 20, No. 2, 1685-1690, 2012.

    234. Guo, Y., et al., "Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics," Photon. Res., Vol. 7, No. 11, 1279-1286, 2019.

    235. Shao, L., et al., "Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators," Optica, Vol. 6, No. 12, 1498-1505, 2019.

    236. Chauvet, M., et al., "Periodically poled LiNbO3 ridge waveguides on silicon for second-harmonic generation," Silicon Photonics and Photonic Integrated Circuits V. International Society for Optics and Photonics, Vol. 9891, 98910S, 2016.

    237. Autere, A., et al., "Nonlinear optics with 2D layered materials," Adv. Mater., Vol. 30, No. 24, 1705963, 2018.

    238. Alam, M. Z., I. De Leon, and R. W. Boyd, "Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region," Science, Vol. 352, No. 6287, 795-797, 2016.

    239. Kauranen, M. and A. V. Zayats, "Nonlinear plasmonics," Nat. Photon., Vol. 6, No. 11, 737, 2012.

    240. Feng, M., H. Zhan, and Y. Chen, "Nonlinear optical and optical limiting properties of graphene families," Appl. Phys. Lett., Vol. 96, No. 3, 033107, 2010.

    241. Liu, Z., et al., "Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes," Appl. Phys. Lett., Vol. 94, No. 2, 021902, 2009.

    242. Liu, L., et al., "Enhanced optical Kerr nonlinearity of MoS2 on silicon waveguides," Photon. Res., Vol. 3, No. 5, 206-209, 2015.

    243. Alam, M. Z., et al., "Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material," Nat. Photon., Vol. 12, No. 2, 79-83, 2018.

    244. Neira, A. D., et al., "Eliminating material constraints for nonlinearity with plasmonic metamaterials," Nat. Commun., Vol. 6, No. 1, 1-8, 2015.

    245. Li, G., S. Zhang, and T. Zentgraf, "Nonlinear photonic metasurfaces," Nat. Rev. Mater., Vol. 2, No. 5, 1-14, 2017.

    246. Lee, J., et al., "Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions," Nature, Vol. 511, No. 7507, 65-69, 2014.

    247. Horak, P. and F. Poletti, "Multimode nonlinear fibre optics: Theory and applications," Recent Progress in Optical Fiber Research, 3-25, 2012.

    248. Gloge, D. and E. A. J. Marcatili, "Multimode theory of graded-core fibers," Bell System Technical Journal, Vol. 52, No. 9, 1563-1578, 1973.

    249. Wright, L. G., D. N. Christodoulides, and F. W. Wise, "Controllable spatiotemporal nonlinear effects in multimode fibres," Nat. Photon., Vol. 9, No. 5, 306-310, 2015.

    250. Renninger, W. H. and F. W. Wise, "Optical solitons in graded-index multimode fibres," Nat. Commun., Vol. 4, No. 1, 1-6, 2013.

    251. Krupa, K., et al., "Spatial beam self-cleaning in multimode fibres," Nat. Photon., Vol. 11, No. 4, 237-241, 2017.

    252. Demas, J., et al., "Intermodal nonlinear mixing with Bessel beams in optical fiber," Optica, Vol. 2, No. 1, 14-17, 2015.

    253. Wright, L. G., et al., "Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves," Phys. Rev. Lett., Vol. 115, No. 22, 223902, 2015.

    254. Krupa, K., et al., "Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves," Phys. Rev. Lett., Vol. 116, No. 18, 183901, 2016.

    255. Elshaari, A. W., et al., "Hybrid integrated quantum photonic circuits," Nat. Photon., Vol. 14, 285-298, 2020.

    256. Singh, A., et al., "Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip," Optica, Vol. 6, No. 5, 563-569, 2019.