Vol. 169

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-12-31

A Parameter-Free Calibration Process for a Scheimpflug LIDAR for Volumetric Profiling

By Longqiang Luo, Xiang Chen, Zhanpeng Xu, Shuo Li, Yaoran Sun, and Sailing He
Progress In Electromagnetics Research, Vol. 169, 117-127, 2020
doi:10.2528/PIER20120701

Abstract

Scheimpflug LIDAR has attracted considerable attention in the recent years, and has been widely applied in many fields due to its infinite depth of field. In this study, we reconstruct a series of formulas to demonstrate the Scheimpflug principles, with reference at the hinge point. These formulas based on directly measurable parameters are simple in form. Base on this, we report a new calibration for the Scheimpflug system, without measuring the instrument parameters. We also confirm that the result of calibration is accordance with the actual setting of the system. To take full advantage of the infinite depth of field of the Scheimpflug system, we have designed and carried out the system, combining with a rotary stage, to obtain the entire volumetric profile for a target of interest in a cycle rotation. To the best of our knowledge, this is the first time Scheimpflug system is utilized to perform a three-dimensional volumetric profile measurement.

Citation


Longqiang Luo, Xiang Chen, Zhanpeng Xu, Shuo Li, Yaoran Sun, and Sailing He, "A Parameter-Free Calibration Process for a Scheimpflug LIDAR for Volumetric Profiling," Progress In Electromagnetics Research, Vol. 169, 117-127, 2020.
doi:10.2528/PIER20120701
http://jpier.org/PIER/pier.php?paper=20120701

References


    1. Fu, G., A. Menciassi, and P. Dario, "Development of a low-cost active 3D triangulation laser scanner for indoor navigation of miniature mobile robots," Robotics and Autonomous Systems, Vol. 60, 1317-1326, 2012.
    doi:10.1016/j.robot.2012.06.002

    2. Schwenke, H., et al., "Optical methods for dimensional metrology in production engineering," CIRP Anmanuf. Technol., Vol. 51, 685-699, 2002.
    doi:10.1016/S0007-8506(07)61707-7

    3. Lu, Y. and R. Lu, "Structured-illumination reflectance imaging coupled with phase analysis techniques for surface profiling of apples," Journal of Food Engineering, Vol. 232, 11-20, 2018.
    doi:10.1016/j.jfoodeng.2018.03.016

    4. Sansoni, G., M. Trebeschi, and F. Docchio, "State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation," Sensors, Vol. 9, 568-601, 2009.
    doi:10.3390/s90100568

    5. Nadolny, K. and W. Kaplonek, "Analysis of flatness deviations for austenitic stainless steel workpieces after efficient surface machining," Measurement Science Review, Vol. 1, 204-212, 2014.
    doi:10.2478/msr-2014-0028

    6. Ye, J., et al., "3D reconstruction of line-structured light based on binocular vision calibration rotary axis," Applied Optics, Vol. 5, 8272-8278, 2020.
    doi:10.1364/AO.403356

    7. Wang, J. and Y. Yang, "High-speed three-dimensional measurement technique for object surface with a large range of reflectivity variations," Applied Optics, Vol. 57, 9172-9182, 2018.
    doi:10.1364/AO.57.009172

    8. Schlarp, J., E. Csencsics, and G. Schitter, "Optical scanning of laser line sensors for 3D imaging," Applied Optics, Vol. 57, 5242-5248, 2018.
    doi:10.1364/AO.57.005242

    9. Lilienblum, E. and A. Al-Hamadi, "A structured light approach for 3-D surface reconstruction with a stereo line-scan system," IEEE Trans. Instrum. Meas., Vol. 64, 1266-1274, 2015.
    doi:10.1109/TIM.2014.2364105

    10. Yang, Y., et al., "3D color reconstruction based on underwater RGB laser line scanning system," Optik, Vol. 125, 6074-6077, 2014.
    doi:10.1016/j.ijleo.2014.07.072

    11. Cai, F., et al., "High-resolution mobile bio-microscope with smartphone telephoto camera lens," Optik, Vol. 20, 164449, 2020.
    doi:10.1016/j.ijleo.2020.164449

    12. Cai, F., et al., "Handheld four-dimensional optical sensor," Optik, Vol. 20, 164001, 2020.
    doi:10.1016/j.ijleo.2019.164001

    13. Xu, Z., et al., "Light-sheet microscopy for surface topography measurements and quantitative analysis," Sensors, Vol. 20, 284210, 2020.

    14. Blais, F., "Review of 20 years of range sensor development," Journal of Electronic Imaging, Vol. 13, 231-243, 2004.
    doi:10.1117/1.1631921

    15. Lin, H., et al., "Review and comparison of high-dynamic range three-dimensional shape measurement techniques," Journal of Sensors, Vol. 2017, 957685, 2017.
    doi:10.1155/2017/9576850

    16. Brydegaard, M., et al., "The Scheimpflug lidar method," SPIE Lidar Remote Sensing for Environmental Monitoring, Vol. 10406, 104060I, 2017.

    17. Prasad, A. K., "Stereoscopic particle image velocimetry," Experimentsin Fluids, Vol. 29, 103-116, 2000.
    doi:10.1007/s003480000143

    18. Zang, W. J. and A. K. Prasad, "Performance evaluation of a Scheimpflug stereocamera for particle image velocimetry," Applied Optics, Vol. 36, 8738-8744, 1997.
    doi:10.1364/AO.36.008738

    19. Prasad, A. K. and K. Jensen, "Scheimpflug stereocamera for particle image velocimetry in liquid flows," Applied Optics, Vol. 34, 7092-7099, 1995.
    doi:10.1364/AO.34.007092

    20. Kong, Z., et al., "Three-wavelength polarization Scheimpflug lidar system developed for remote sensing of atmospheric aerosols," Applied Optics, Vol. 5, 8612-8621, 2019.
    doi:10.1364/AO.58.008612

    21. Larsson, J., et al., "Atmospheric CO2 sensing using Scheimpflug-lidar based on a 1.57-μm fiber source," Optics Express, Vol. 27, 17348-17358, 2019.
    doi:10.1364/OE.27.017348

    22. Sun, G., et al., "Small-scale Scheimpflug lidar for aerosol extinction coefficient and vertical atmospheric transmittance detection," Optics Express, Vol. 26, 7423-7436, 2018.
    doi:10.1364/OE.26.007423

    23. Mei, L., P. Guan, and Z. Kong, "Remote sensing of atmospheric NO2 by employing the continuous-wave differential absorption lidar technique," Optics Express, Vol. 25, A953-A962, 2017.
    doi:10.1364/OE.25.00A953

    24. Mei, L., "Development of an atmospheric polarization Scheimpflug lidar system based on a time-division multiplexing scheme," Optics Letters, Vol. 42, 3562-3565, 2017.
    doi:10.1364/OL.42.003562

    25. Mei, L., et al., "Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique," Optics Express, Vol. 25, A628-A638, 2017.
    doi:10.1364/OE.25.00A628

    26. Mei, L. and M. Brydegaard, "Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system," Optics Express, Vol. 23, 1613-1628, 2015.
    doi:10.1364/OE.23.0A1613

    27. Lin, H., Y. Zhang, and L. Mei, "Fluorescence Scheimpflug LiDAR developed for the three-dimension profiling of plants," Optics Express, Vol. 28, 9269-9279, 2020.
    doi:10.1364/OE.389043

    28. Wang, X., et al., "Drone-based area scanning of vegetation fluorescence height profiles using a miniaturized hyperspectral lidar system," Applied Physics B — Lasers and Optics, Vol. 12, 20711, 2018.

    29. Zhao, G., et al., "Inelastic hyperspectral lidar for profiling aquatic ecosystems," Laser & Photonics Reviews, Vol. 10, 807-813, 2016.
    doi:10.1002/lpor.201600093

    30. Gao, F., et al., "Oil pollution discrimination by an inelastic hyperspectral Scheimpflug lidar system," Optics Express, Vol. 25, 25515-25522, 2017.
    doi:10.1364/OE.25.025515

    31. Chen, K., et al., "Overwater light-sheet Scheimpflug lidar system for an underwater three-dimensional profile bathymetry," Applied Optics, Vol. 58, 7643-7648, 2019.
    doi:10.1364/AO.58.007643

    32. Gao, F., et al., "Light-sheet based two-dimensional Scheimpflug lidar system for profile measurements," Optics Express, Vol. 26, 27179-27188, 2018.
    doi:10.1364/OE.26.027179

    33. Peng, J., et al., "Distortion correction for microscopic fringe projection system with Scheimpflug telecentric lens," Applied Optics, Vol. 54, 10055-10062, 2015.
    doi:10.1364/AO.54.010055

    34. Yin, X., et al., "Analysis and simplification of lens distortion model for the Scheimpflug imaging system calibration," Optics Communications, Vol. 43, 380-384, 2019.
    doi:10.1016/j.optcom.2018.05.086

    35. Sun, C., et al., "Review of calibration methods for Scheimpflug camera," Journalof Sensors, Vol. 2018, 3901431, 2018.

    36. Miks, A., J. Novak, and P. Novak, "Analysis of imaging for laser triangulation sensors under Scheimpflug rule," Optics Express, Vol. 21, 18225-18235, 2013.
    doi:10.1364/OE.21.018225

    37. Li, J., et al., "Calibration of a multiple axes 3-D laser scanning system consisting of robot, portable laser scanner and turntable," Optik, Vol. 122, 324-329, 2011.
    doi:10.1016/j.ijleo.2010.02.014