Vol. 170

Latest Volume
All Volumes
All Issues

Designing Nanoinclusions for Quantum Sensing Based on Electromagnetic Scattering Formalism (Invited Paper)

By Constantinos Valagiannopoulos
Progress In Electromagnetics Research, Vol. 170, 1-15, 2021


Quantum interactions between a single particle and nanoinclusions of spherical or cylindrical shape are optimized to produce scattering lineshapes of high selectivity with respect to impinging energies, excitation directions and cavity sizes. The optimization uses a rigorous solution derived via electromagnetic scattering formalism while the adopted scheme rejects boundary extrema corresponding to resonances that occur outside of the permissible parametric domains. The reported effects may inspire experimental efforts towards designing quantum sensing systems employed in applications spanning from quantum switching and filtering to single-photon detection and quantum memory.


Constantinos Valagiannopoulos, "Designing Nanoinclusions for Quantum Sensing Based on Electromagnetic Scattering Formalism (Invited Paper)," Progress In Electromagnetics Research, Vol. 170, 1-15, 2021.


    1. Giovannetti, V., S. Lloyd, and L. Maccone, "Quantum-enhanced measurements: Beating the standard quantum limit," Science, Vol. 306, 1330, 2004.

    2. Degen, C. L., F. Reinhard, and P. Cappellaro, "Quantum sensing," Rev. Mod. Phys., Vol. 89, 035002, 2017.

    3. Schirhag, R., K. Chang, M. Loretz, and C. L. Degen, "Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology," Annu. Rev. Phys. Chem., Vol. 65, 83, 2014.

    4. Zaiser, S., T. Rendler, I. Jakobi, T. Wolf, S.-Y. Lee, S. Wagner, V. Bergholm, T. Schulte-Herbruggen, P. Neumann, and J. Wrachtr, "Enhancing quantum sensing sensitivity by a quantum memory," Nat. Commun., Vol. 7, 12279, 2016.

    5. Pirandola, S., B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, "Advances in photonic quantum sensing," Nat. Photonics, Vol. 12, 724, 2018.

    6. Ajoy, A., Y.-X. Liu, K. Saha, L. Marseglia, J.-C. Jaskula, U. Bissbort, and P. Cappellaro, "Quantum interpolation for high-resolution sensing," Proc. Natl. Acad. Sci. U.S.A., Vol. 114, 2149, 2017.

    7. Bonato, C., M. S. Blok, H. T. Dinani, D. W. Berry, M. L. Markham, D. J. Twitchen, and R. Hanson, "Optimized quantum sensing with a single electron spin using real-time adaptive measurements," Nat. Nanotechnol., Vol. 11, 247, 2016.

    8. Istrate, E. and E. H. Sargent, "Photonic crystal heterostructures and interfaces," Rev. Mod. Phys., Vol. 78, 455, 2006.

    9. Fleury, R. and A. Alu, "Exotic properties and potential applications of quantum metamaterials," Appl. Phys. A, Vol. 109, 781, 2012.

    10. Fleury, R. and A. Alu, "Manipulation of electron flow using near-zero index semiconductor metamaterials," Phys. Rev. B, Vol. 90, 035138, 2014.

    11. Valagiannopoulos, C., "Optimized quantum filtering of matter waves with respect to incidence direction and impinging energy," Quantum Eng., Vol. 2, e52, 2020.

    12. Valagiannopoulos, C., "Quantum Fabry-Perot resonator: Extreme angular selectivity in matterwave tunneling," Phys. Rev. Appl., Vol. 12, 054042, 2019.

    13. Valagiannopoulos, C., "Optimally sharp energy filtering of quantum particles via homogeneous planar inclusions," Sci. Rep., Vol. 10, 816, 2020.

    14. Ogawana, T. and H. Sakaguchi, "Transmission coefficient from generalized Cantor-like potentials and its multifractality," Phys. Rev. E, Vol. 97, 012205, 2018.

    15. Valagiannopoulos, C., "Predicting the quantum texture from transmission probabilities," J. Appl. Phys., Vol. 127, 174301, 2020.

    16. Christesen, J. D., C. W. Pinion, D. J. Hill, S. Kim, and J. F. Cahoon, "Chemically engraving semiconductor nanowires: Using three-dimensional nanoscale morphology to encode functionality from the bottom up," J. Phys. Chem. Lett., Vol. 7, 685, 2016.

    17. Gazibegovic, S., et al., "Epitaxy of advanced nanowire quantum devices," Nature, Vol. 548, 434, 2017.

    18. Hausmann, B. J. M., M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmerd, and M. Loncar, "Fabrication of diamond nanowires for quantum information processing applications," Diam. Relat. Mater., Vol. 19, 621, 2010.

    19. Tom, R. T., A. S. Nair, N. Singh, M. Aslam, C. L. Nagendra, R. Philip, K. Vijayamohanan, and T. Pradeep, "Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core-shell nanoparticles: One-step synthesis, characterization, spectroscopy, and optical limiting properties," Langmuir, Vol. 19, 3439, 2003.

    20. Xu, L., M. Sun, W. Ma, H. Kuang, and C. Xu, "Self-assembled nanoparticle dimers with contemporarily relevant properties and emerging applications," Materials Today, Vol. 19, 595, 2016.

    21. Ko, H.-W., M.-H. Chi, C.-W. Chang, C.-W. Chu, K.-H. Luo, and J.-T. Chen, "Fabrication of coreshell polymer nanospheres in the nanopores of anodic Aluminum oxide templates using polymer blend solutions," ACS Macro Letters, Vol. 4, 717, 2015.

    22. Lee, J. Y. and R.-K. Lee, "Exploring matter wave scattering by means of the phase diagram," EPL, Vol. 124, 30006, 2018.

    23. Valagiannopoulos, C., "Maximal quantum scattering by homogeneous spherical inclusions," Phys. Rev. B, Vol. 100, 035308, 2019.

    24. Lee, J. Y., A. E. Miroshnichenko, and R.-K. Lee, "Designing quantum resonant scatterers at subwavelength scale," Phys. Lett. A, Vol. 381, 2860, 2017.

    25. Liao, B., M. Zebarjadi, K. Esfarjani, and G. Chen, "Cloaking core-shell nanoparticles from conducting electrons in solids," Phys. Rev. Lett., Vol. 109, 126806, 2012.

    26. Valagiannopoulos, C., "Perfect quantum cloaking of tilted cylindrical nanocavities," Phys. Rev. B, Vol. 101, 195301, 2020.

    27. Valagiannopoulos, C., E. A. Marengo, A. G. Dimakis, and A. Alu, "Aharonov-Bohm-inspired tomographic imaging via compressive sensing," IET Microw. Antennas Propag., Vol. 12, 1890, 2018.

    28. Fleury, R. and A. Alu, "Quantum cloaking based on scattering cancellation," Phys. Rev. B, Vol. 87, 045423, 2013.

    29. Valagiannopoulos, C., A. N. Askarpour, and A. Alu, "Aharonov-Bohm detection of two-dimensional magnetostatic cloaks," Phys. Rev. B, Vol. 92, 224414, 2015.

    30. Lee, J. Y. and R.-K. Lee, "Hiding the interior region of core-shell nanoparticles with quantum invisible cloaks," Phys. Rev. B, Vol. 89, 155425, 2014.

    31. Fleury, R. and A. Alu, "Furtive quantum sensing using matter-wave cloaks," Phys. Rev. B, Vol. 87, 201106(R), 2013.

    32. Zhang, S., D. A. Genov, C. Sun, and X. Zhang, "Cloaking of matter waves," Phys. Rev. Lett., Vol. 100, 123002, 2008.

    33. Greenleaf, A., Y. Kurylev, M. Lassas, and G. Uhlmann, "Approximate quantum cloaking and almost-trapped states," Phys. Rev. Lett., Vol. 101, 220404, 2008.

    34. Valagiannopoulos, C. A., "Study of an electrically anisotropic cylinder excited magnetically by a straight strip line," Progress In Electromagnetics Research, Vol. 73, 297, 2007.

    35. Valagiannopoulos, C. A., "Arbitrary currents on circular cylinder with inhomogeneous cladding and RCS optimization," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 665-680, 2007.

    36. Valagiannopoulos, C. A., "Closed-form solution to the scattering of a skew strip field by metallic pin in a slab," Progress In Electromagnetics Research, Vol. 79, 1, 2008.

    37. Valagiannopoulos, C. A., "A novel methodology for estimating the permittivity of a specimen rod at low radio frequencies," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5–6, 631-640, 2010.

    38. Trachanas, S., An Introduction to Quantum Physics: A First Course for Physicists, Chemists, Materials Scientists, and Engineers, John Wiley & Sons, New York, USA, 2018.

    39. Griffiths, D. J., "Introduction to Quantum Mechanics," Pearson Prentice Hall, 2005.

    40. Hodge, W. B., S. V. Migirditch, and W. C. Kerr, "Electron spin and probability current density in quantum mechanics," Am. J. Phys., Vol. 82, 681, 2014.

    41. Balanis, C. A., Advanced Engineering Electromagnetics, JohnWiley & Sons, New York, USA, 2012.

    42. Osipov, A. V. and S. A. Tretyakov, Modern Electromagnetic Scattering Theory with Applications, John Wiley & Sons, New York, USA, 2017.

    43. Valagiannopoulos, C. A., "Single-series solution to the radiation of loop antenna in the presence of a conducting sphere," Progress In Electromagnetics Research, Vol. 71, 277, 2007.

    44. Sheverdin, A. and C. Valagiannopoulos, "Core-shell nanospheres under visible light: Optimal absorption, scattering, and cloaking," Phys. Rev. B, Vol. 99, 075305, 2019.

    45. Cohen-Tannoudji, C., B. Diu, and F. Laloe, Quantum Mechanics, John Wiley & Sons, New York, USA, 1992.

    46. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, New York, USA, 1983.

    47. Valagiannopoulos, C. A., "An overview of the Watson transformation presented through a simple example," Progress In Electromagnetics Research, Vol. 75, 137, 2007.

    48. Mandilara, A., C. Valagiannopoulos, and V. M. Akulin, "Classical and quantum dispersion-free coherent propagation by tailoring multimodal coupling," Phys. Rev. A, Vol. 99, 023849, 2019.

    49. Abrashuly, A. and C. Valagiannopoulos, "Limits for absorption and scattering by core-shell nanowires in the visible spectrum," Phys. Rev. Appl., Vol. 11, 014051, 2019.

    50. Adachi, S., Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors, John Wiley & Sons, New York, USA, 2009.

    51. Miroshnichenko, A. E., S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, 2257, 2010.

    52. Valagiannopoulos, C., "Steering of quantum signals along coupled paths of arbitrary curvature," J. Opt. Soc. Am. B, Vol. 38, 263, 2021.