Vol. 170

Latest Volume
All Volumes
All Issues
2021-01-14

Designing Nanoinclusions for Quantum Sensing Based on Electromagnetic Scattering Formalism (Invited Paper)

By Constantinos Valagiannopoulos
Progress In Electromagnetics Research, Vol. 170, 1-15, 2021
doi:10.2528/PIER20112306

Abstract

Quantum interactions between a single particle and nanoinclusions of spherical or cylindrical shape are optimized to produce scattering lineshapes of high selectivity with respect to impinging energies, excitation directions and cavity sizes. The optimization uses a rigorous solution derived via electromagnetic scattering formalism while the adopted scheme rejects boundary extrema corresponding to resonances that occur outside of the permissible parametric domains. The reported effects may inspire experimental efforts towards designing quantum sensing systems employed in applications spanning from quantum switching and filtering to single-photon detection and quantum memory.

Citation


Constantinos Valagiannopoulos, "Designing Nanoinclusions for Quantum Sensing Based on Electromagnetic Scattering Formalism (Invited Paper)," Progress In Electromagnetics Research, Vol. 170, 1-15, 2021.
doi:10.2528/PIER20112306
http://jpier.org/PIER/pier.php?paper=20112306

References


    1. Giovannetti, V., S. Lloyd, and L. Maccone, "Quantum-enhanced measurements: Beating the standard quantum limit," Science, Vol. 306, 1330, 2004.
    doi:10.1126/science.1104149

    2. Degen, C. L., F. Reinhard, and P. Cappellaro, "Quantum sensing," Rev. Mod. Phys., Vol. 89, 035002, 2017.
    doi:10.1103/RevModPhys.89.035002

    3. Schirhag, R., K. Chang, M. Loretz, and C. L. Degen, "Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology," Annu. Rev. Phys. Chem., Vol. 65, 83, 2014.
    doi:10.1146/annurev-physchem-040513-103659

    4. Zaiser, S., T. Rendler, I. Jakobi, T. Wolf, S.-Y. Lee, S. Wagner, V. Bergholm, T. Schulte-Herbruggen, P. Neumann, and J. Wrachtr, "Enhancing quantum sensing sensitivity by a quantum memory," Nat. Commun., Vol. 7, 12279, 2016.
    doi:10.1038/ncomms12279

    5. Pirandola, S., B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, "Advances in photonic quantum sensing," Nat. Photonics, Vol. 12, 724, 2018.
    doi:10.1038/s41566-018-0301-6

    6. Ajoy, A., Y.-X. Liu, K. Saha, L. Marseglia, J.-C. Jaskula, U. Bissbort, and P. Cappellaro, "Quantum interpolation for high-resolution sensing," Proc. Natl. Acad. Sci. U.S.A., Vol. 114, 2149, 2017.
    doi:10.1073/pnas.1610835114

    7. Bonato, C., M. S. Blok, H. T. Dinani, D. W. Berry, M. L. Markham, D. J. Twitchen, and R. Hanson, "Optimized quantum sensing with a single electron spin using real-time adaptive measurements," Nat. Nanotechnol., Vol. 11, 247, 2016.
    doi:10.1038/nnano.2015.261

    8. Istrate, E. and E. H. Sargent, "Photonic crystal heterostructures and interfaces," Rev. Mod. Phys., Vol. 78, 455, 2006.
    doi:10.1103/RevModPhys.78.455

    9. Fleury, R. and A. Alu, "Exotic properties and potential applications of quantum metamaterials," Appl. Phys. A, Vol. 109, 781, 2012.
    doi:10.1007/s00339-012-7345-0

    10. Fleury, R. and A. Alu, "Manipulation of electron flow using near-zero index semiconductor metamaterials," Phys. Rev. B, Vol. 90, 035138, 2014.
    doi:10.1103/PhysRevB.90.035138

    11. Valagiannopoulos, C., "Optimized quantum filtering of matter waves with respect to incidence direction and impinging energy," Quantum Eng., Vol. 2, e52, 2020.
    doi:10.1002/que2.52

    12. Valagiannopoulos, C., "Quantum Fabry-Perot resonator: Extreme angular selectivity in matterwave tunneling," Phys. Rev. Appl., Vol. 12, 054042, 2019.
    doi:10.1103/PhysRevApplied.12.054042

    13. Valagiannopoulos, C., "Optimally sharp energy filtering of quantum particles via homogeneous planar inclusions," Sci. Rep., Vol. 10, 816, 2020.
    doi:10.1038/s41598-019-56793-1

    14. Ogawana, T. and H. Sakaguchi, "Transmission coefficient from generalized Cantor-like potentials and its multifractality," Phys. Rev. E, Vol. 97, 012205, 2018.
    doi:10.1103/PhysRevE.97.012205

    15. Valagiannopoulos, C., "Predicting the quantum texture from transmission probabilities," J. Appl. Phys., Vol. 127, 174301, 2020.
    doi:10.1063/5.0006780

    16. Christesen, J. D., C. W. Pinion, D. J. Hill, S. Kim, and J. F. Cahoon, "Chemically engraving semiconductor nanowires: Using three-dimensional nanoscale morphology to encode functionality from the bottom up," J. Phys. Chem. Lett., Vol. 7, 685, 2016.
    doi:10.1021/acs.jpclett.5b02444

    17. Gazibegovic, S., et al., "Epitaxy of advanced nanowire quantum devices," Nature, Vol. 548, 434, 2017.
    doi:10.1038/nature23468

    18. Hausmann, B. J. M., M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmerd, and M. Loncar, "Fabrication of diamond nanowires for quantum information processing applications," Diam. Relat. Mater., Vol. 19, 621, 2010.
    doi:10.1016/j.diamond.2010.01.011

    19. Tom, R. T., A. S. Nair, N. Singh, M. Aslam, C. L. Nagendra, R. Philip, K. Vijayamohanan, and T. Pradeep, "Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core-shell nanoparticles: One-step synthesis, characterization, spectroscopy, and optical limiting properties," Langmuir, Vol. 19, 3439, 2003.
    doi:10.1021/la0266435

    20. Xu, L., M. Sun, W. Ma, H. Kuang, and C. Xu, "Self-assembled nanoparticle dimers with contemporarily relevant properties and emerging applications," Materials Today, Vol. 19, 595, 2016.
    doi:10.1016/j.mattod.2016.05.015

    21. Ko, H.-W., M.-H. Chi, C.-W. Chang, C.-W. Chu, K.-H. Luo, and J.-T. Chen, "Fabrication of coreshell polymer nanospheres in the nanopores of anodic Aluminum oxide templates using polymer blend solutions," ACS Macro Letters, Vol. 4, 717, 2015.
    doi:10.1021/acsmacrolett.5b00297

    22. Lee, J. Y. and R.-K. Lee, "Exploring matter wave scattering by means of the phase diagram," EPL, Vol. 124, 30006, 2018.
    doi:10.1209/0295-5075/124/30006

    23. Valagiannopoulos, C., "Maximal quantum scattering by homogeneous spherical inclusions," Phys. Rev. B, Vol. 100, 035308, 2019.
    doi:10.1103/PhysRevB.100.035308

    24. Lee, J. Y., A. E. Miroshnichenko, and R.-K. Lee, "Designing quantum resonant scatterers at subwavelength scale," Phys. Lett. A, Vol. 381, 2860, 2017.
    doi:10.1016/j.physleta.2017.06.051

    25. Liao, B., M. Zebarjadi, K. Esfarjani, and G. Chen, "Cloaking core-shell nanoparticles from conducting electrons in solids," Phys. Rev. Lett., Vol. 109, 126806, 2012.
    doi:10.1103/PhysRevLett.109.126806

    26. Valagiannopoulos, C., "Perfect quantum cloaking of tilted cylindrical nanocavities," Phys. Rev. B, Vol. 101, 195301, 2020.
    doi:10.1103/PhysRevB.101.195301

    27. Valagiannopoulos, C., E. A. Marengo, A. G. Dimakis, and A. Alu, "Aharonov-Bohm-inspired tomographic imaging via compressive sensing," IET Microw. Antennas Propag., Vol. 12, 1890, 2018.
    doi:10.1049/iet-map.2017.0609

    28. Fleury, R. and A. Alu, "Quantum cloaking based on scattering cancellation," Phys. Rev. B, Vol. 87, 045423, 2013.
    doi:10.1103/PhysRevB.87.045423

    29. Valagiannopoulos, C., A. N. Askarpour, and A. Alu, "Aharonov-Bohm detection of two-dimensional magnetostatic cloaks," Phys. Rev. B, Vol. 92, 224414, 2015.
    doi:10.1103/PhysRevB.92.224414

    30. Lee, J. Y. and R.-K. Lee, "Hiding the interior region of core-shell nanoparticles with quantum invisible cloaks," Phys. Rev. B, Vol. 89, 155425, 2014.
    doi:10.1103/PhysRevB.89.155425

    31. Fleury, R. and A. Alu, "Furtive quantum sensing using matter-wave cloaks," Phys. Rev. B, Vol. 87, 201106(R), 2013.
    doi:10.1103/PhysRevB.87.201106

    32. Zhang, S., D. A. Genov, C. Sun, and X. Zhang, "Cloaking of matter waves," Phys. Rev. Lett., Vol. 100, 123002, 2008.
    doi:10.1103/PhysRevLett.100.123002

    33. Greenleaf, A., Y. Kurylev, M. Lassas, and G. Uhlmann, "Approximate quantum cloaking and almost-trapped states," Phys. Rev. Lett., Vol. 101, 220404, 2008.
    doi:10.1103/PhysRevLett.101.220404

    34. Valagiannopoulos, C. A., "Study of an electrically anisotropic cylinder excited magnetically by a straight strip line," Progress In Electromagnetics Research, Vol. 73, 297, 2007.
    doi:10.2528/PIER07041203

    35. Valagiannopoulos, C. A., "Arbitrary currents on circular cylinder with inhomogeneous cladding and RCS optimization," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 665-680, 2007.
    doi:10.1163/156939307780667337

    36. Valagiannopoulos, C. A., "Closed-form solution to the scattering of a skew strip field by metallic pin in a slab," Progress In Electromagnetics Research, Vol. 79, 1, 2008.
    doi:10.2528/PIER07092206

    37. Valagiannopoulos, C. A., "A novel methodology for estimating the permittivity of a specimen rod at low radio frequencies," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5–6, 631-640, 2010.
    doi:10.1163/156939310791036331

    38. Trachanas, S., An Introduction to Quantum Physics: A First Course for Physicists, Chemists, Materials Scientists, and Engineers, John Wiley & Sons, New York, USA, 2018.

    39. Griffiths, D. J., "Introduction to Quantum Mechanics," Pearson Prentice Hall, 2005.

    40. Hodge, W. B., S. V. Migirditch, and W. C. Kerr, "Electron spin and probability current density in quantum mechanics," Am. J. Phys., Vol. 82, 681, 2014.
    doi:10.1119/1.4868094

    41. Balanis, C. A., Advanced Engineering Electromagnetics, JohnWiley & Sons, New York, USA, 2012.

    42. Osipov, A. V. and S. A. Tretyakov, Modern Electromagnetic Scattering Theory with Applications, John Wiley & Sons, New York, USA, 2017.
    doi:10.1002/9781119004639

    43. Valagiannopoulos, C. A., "Single-series solution to the radiation of loop antenna in the presence of a conducting sphere," Progress In Electromagnetics Research, Vol. 71, 277, 2007.
    doi:10.2528/PIER07030803

    44. Sheverdin, A. and C. Valagiannopoulos, "Core-shell nanospheres under visible light: Optimal absorption, scattering, and cloaking," Phys. Rev. B, Vol. 99, 075305, 2019.
    doi:10.1103/PhysRevB.99.075305

    45. Cohen-Tannoudji, C., B. Diu, and F. Laloe, Quantum Mechanics, John Wiley & Sons, New York, USA, 1992.

    46. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, New York, USA, 1983.

    47. Valagiannopoulos, C. A., "An overview of the Watson transformation presented through a simple example," Progress In Electromagnetics Research, Vol. 75, 137, 2007.
    doi:10.2528/PIER07052502

    48. Mandilara, A., C. Valagiannopoulos, and V. M. Akulin, "Classical and quantum dispersion-free coherent propagation by tailoring multimodal coupling," Phys. Rev. A, Vol. 99, 023849, 2019.
    doi:10.1103/PhysRevA.99.023849

    49. Abrashuly, A. and C. Valagiannopoulos, "Limits for absorption and scattering by core-shell nanowires in the visible spectrum," Phys. Rev. Appl., Vol. 11, 014051, 2019.
    doi:10.1103/PhysRevApplied.11.014051

    50. Adachi, S., Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors, John Wiley & Sons, New York, USA, 2009.

    51. Miroshnichenko, A. E., S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, 2257, 2010.
    doi:10.1103/RevModPhys.82.2257

    52. Valagiannopoulos, C., "Steering of quantum signals along coupled paths of arbitrary curvature," J. Opt. Soc. Am. B, Vol. 38, 263, 2021.
    doi:10.1364/JOSAB.404394