Vol. 168

Back:[PDF file]
Latest Volume
All Volumes
All Issues

Second-Order Nonlinear Susceptibility Enhancement in Gallium Nitride Nanowires (Invited)

By Kangwei Wang, Haoliang Qian, Zhaowei Liu, and Paul K. L. Yu
Progress In Electromagnetics Research, Vol. 168, 25-30, 2020


We report the second-harmonic generation (SHG) from single GaN nanowire. The diameter of the GaN nanowire varies from 150 to 400 nm. We present a model for the SHG process in the GaN nanowire; the analysis shows quantitatively that the SHG is dominated by its surface area. The effective second order nonlinear optical susceptibility (χ(2)eff) increases as the diameter of the GaN nanowire decreases. For 150-nm diameter GaN nanowire, χ(2)eff reaches 136 pm/V.


Kangwei Wang, Haoliang Qian, Zhaowei Liu, and Paul K. L. Yu, "Second-Order Nonlinear Susceptibility Enhancement in Gallium Nitride Nanowires (Invited)," Progress In Electromagnetics Research, Vol. 168, 25-30, 2020.


    1. Pantazis, P., J. Maloney, D. Wu, and S. E. Fraser, "Second Harmonic Generating (SHG) nanoprobes for in vivo imaging," Proceedings of the National Academy of Sciences, Vol. 107, 14535-14540, 2010.

    2. Boyd, R. W., Nonlinear Optics, 3rd Ed., Academic Press, Orlando, FL, USA, 2008.

    3. Wooten, E. L., et al., "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron., Vol. 6, 69-82, 2000.

    4. Jacobsen, R. S., et al., "Strained silicon as a new electro-optic material," Nature, Vol. 441, 199-202, 2006.

    5. Puckett, M. W., et al., "Tensor of the second-order nonlinear susceptibility in asymmetrically strained silicon waveguides: Analysis and experimental validation," Opt. Lett., Vol. 39, 1693-1696, 2014.

    6. Shi, Y., et al., "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science, Vol. 288, 119-122, 2000.

    7. Alloatti, L., et al., "Second-order nonlinear optical metamaterials: ABC-type nanolaminates," Appl. Phys. Lett., Vol. 107, 121903, 2015.

    8. Novotny, C. J., C. T. DeRose, R. A. Norwood, and P. K. L. Yu, "Linear electrooptic coefficient of InP nanowires," Nano Lett., Vol. 8, 1020-1025, 2008.

    9. Bautista, G., et al., "Second-harmonic generation imaging of semiconductor nanowires with focused vector beams," Nano Lett., Vol. 15, 1564-1569, 2015.

    10. Sanatinia, R., M. Swillo, and S. Anand, "Surface second-harmonic generation from vertical GaP nanopillars," Nano Lett., Vol. 12, 820-826, 2012.

    11. Sanatinia, R., S. Anand, and M. Swillo, "Experimental quantification of surface optical nonlinearity in GaP nanopillar waveguides," Opt. Express, Vol. 23, 756-764, 2015.

    12. Sanatinia, R., S. Anand, and M. Swillo, "Modal engineering of second-harmonic generation in single GaP nanopillars," Nano Lett., Vol. 14, 5376-5381, 2014.

    13. Hu, H., et al., "Precise determination of the crystallographic orientations in single ZnS nanowires by second-harmonic generation microscopy," Nano Lett., Vol. 15, 3351-3357, 2015.

    14. Liu, W., et al., "Laterally emitted surface second harmonic generation in a single ZnTe nanowire," Nano Lett., Vol. 13, 4224-4229, 2013.

    15. Novotny, C. J. and P. K. L. Yu, "Vertically aligned, catalyst-free InP nanowires grown by metalorganic chemical vapor deposition," Appl. Phys. Lett., Vol. 87, 203111, 2005.

    16. Sutherland, R. L., Handbook of Nonlinear Optics, CRC Press, 2003.

    17. Long, X. C., et al., "GaN linear electro-optic effect," Appl. Phys. Lett., Vol. 67, 1349-1351, 1995.

    18. Miragliotta, J., D. Wickenden, T. Kistenmacher, and W. Bryden, "Linear-and nonlinear-optical properties of GaN thin films," JOSA B, Vol. 10, 1447-1456, 1993.

    19. Xiong, C., et al., "Integrated GaN photonic circuits on silicon (100) for second harmonic generation," Opt. Express, Vol. 19, 10462-10470, 2011.

    20. Abe, M., et al., "Accurate measurement of quadratic nonlinear-optical coefficients of gallium nitride," J. Opt. Soc. Am. B, Vol. 27, 2026-2034, 2010.

    21. Yu, E. T., et al., "Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, Vol. 17, 1742-1749, 1999.

    22. Bernardini, F., V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Phys. Rev. B, Vol. 56, R10024-R10027, 1997.

    23. Shen, Y. R., "Surface properties probed by second-harmonic and sum-frequency generation," Nature, Vol. 337, 519-525, 1989.

    24. Barker, A. S. and M. Ilegems, "Infrared lattice vibrations and free-electron dispersion in GaN," Phys. Rev. B, Vol. 7, 743-750, 1973.