Vol. 168

Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-08-30

Second-Order Nonlinear Susceptibility Enhancement in Gallium Nitride Nanowires (Invited)

By Kangwei Wang, Haoliang Qian, Zhaowei Liu, and Paul K. L. Yu
Progress In Electromagnetics Research, Vol. 168, 25-30, 2020
doi:10.2528/PIER20072201

Abstract

We report the second-harmonic generation (SHG) from single GaN nanowire. The diameter of the GaN nanowire varies from 150 to 400 nm. We present a model for the SHG process in the GaN nanowire; the analysis shows quantitatively that the SHG is dominated by its surface area. The effective second order nonlinear optical susceptibility (χ(2)eff) increases as the diameter of the GaN nanowire decreases. For 150-nm diameter GaN nanowire, χ(2)eff reaches 136 pm/V.

Citation


Kangwei Wang, Haoliang Qian, Zhaowei Liu, and Paul K. L. Yu, "Second-Order Nonlinear Susceptibility Enhancement in Gallium Nitride Nanowires (Invited)," Progress In Electromagnetics Research, Vol. 168, 25-30, 2020.
doi:10.2528/PIER20072201
http://jpier.org/PIER/pier.php?paper=20072201

References


    1. Pantazis, P., J. Maloney, D. Wu, and S. E. Fraser, "Second Harmonic Generating (SHG) nanoprobes for in vivo imaging," Proceedings of the National Academy of Sciences, Vol. 107, 14535-14540, 2010.
    doi:10.1073/pnas.1004748107

    2. Boyd, R. W., Nonlinear Optics, 3rd Ed., Academic Press, Orlando, FL, USA, 2008.

    3. Wooten, E. L., et al., "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron., Vol. 6, 69-82, 2000.
    doi:10.1109/2944.826874

    4. Jacobsen, R. S., et al., "Strained silicon as a new electro-optic material," Nature, Vol. 441, 199-202, 2006.
    doi:10.1038/nature04706

    5. Puckett, M. W., et al., "Tensor of the second-order nonlinear susceptibility in asymmetrically strained silicon waveguides: Analysis and experimental validation," Opt. Lett., Vol. 39, 1693-1696, 2014.
    doi:10.1364/OL.39.001693

    6. Shi, Y., et al., "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science, Vol. 288, 119-122, 2000.
    doi:10.1126/science.288.5463.119

    7. Alloatti, L., et al., "Second-order nonlinear optical metamaterials: ABC-type nanolaminates," Appl. Phys. Lett., Vol. 107, 121903, 2015.
    doi:10.1063/1.4931492

    8. Novotny, C. J., C. T. DeRose, R. A. Norwood, and P. K. L. Yu, "Linear electrooptic coefficient of InP nanowires," Nano Lett., Vol. 8, 1020-1025, 2008.
    doi:10.1021/nl072688k

    9. Bautista, G., et al., "Second-harmonic generation imaging of semiconductor nanowires with focused vector beams," Nano Lett., Vol. 15, 1564-1569, 2015.
    doi:10.1021/nl503984b

    10. Sanatinia, R., M. Swillo, and S. Anand, "Surface second-harmonic generation from vertical GaP nanopillars," Nano Lett., Vol. 12, 820-826, 2012.
    doi:10.1021/nl203866y

    11. Sanatinia, R., S. Anand, and M. Swillo, "Experimental quantification of surface optical nonlinearity in GaP nanopillar waveguides," Opt. Express, Vol. 23, 756-764, 2015.
    doi:10.1364/OE.23.000756

    12. Sanatinia, R., S. Anand, and M. Swillo, "Modal engineering of second-harmonic generation in single GaP nanopillars," Nano Lett., Vol. 14, 5376-5381, 2014.
    doi:10.1021/nl502521y

    13. Hu, H., et al., "Precise determination of the crystallographic orientations in single ZnS nanowires by second-harmonic generation microscopy," Nano Lett., Vol. 15, 3351-3357, 2015.
    doi:10.1021/acs.nanolett.5b00607

    14. Liu, W., et al., "Laterally emitted surface second harmonic generation in a single ZnTe nanowire," Nano Lett., Vol. 13, 4224-4229, 2013.
    doi:10.1021/nl401921s

    15. Novotny, C. J. and P. K. L. Yu, "Vertically aligned, catalyst-free InP nanowires grown by metalorganic chemical vapor deposition," Appl. Phys. Lett., Vol. 87, 203111, 2005.
    doi:10.1063/1.2131182

    16. Sutherland, R. L., Handbook of Nonlinear Optics, CRC Press, 2003.
    doi:10.1201/9780203912539

    17. Long, X. C., et al., "GaN linear electro-optic effect," Appl. Phys. Lett., Vol. 67, 1349-1351, 1995.
    doi:10.1063/1.115547

    18. Miragliotta, J., D. Wickenden, T. Kistenmacher, and W. Bryden, "Linear-and nonlinear-optical properties of GaN thin films," JOSA B, Vol. 10, 1447-1456, 1993.
    doi:10.1364/JOSAB.10.001447

    19. Xiong, C., et al., "Integrated GaN photonic circuits on silicon (100) for second harmonic generation," Opt. Express, Vol. 19, 10462-10470, 2011.
    doi:10.1364/OE.19.010462

    20. Abe, M., et al., "Accurate measurement of quadratic nonlinear-optical coefficients of gallium nitride," J. Opt. Soc. Am. B, Vol. 27, 2026-2034, 2010.
    doi:10.1364/JOSAB.27.002026

    21. Yu, E. T., et al., "Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, Vol. 17, 1742-1749, 1999.
    doi:10.1116/1.590818

    22. Bernardini, F., V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Phys. Rev. B, Vol. 56, R10024-R10027, 1997.
    doi:10.1103/PhysRevB.56.R10024

    23. Shen, Y. R., "Surface properties probed by second-harmonic and sum-frequency generation," Nature, Vol. 337, 519-525, 1989.
    doi:10.1038/337519a0

    24. Barker, A. S. and M. Ilegems, "Infrared lattice vibrations and free-electron dispersion in GaN," Phys. Rev. B, Vol. 7, 743-750, 1973.
    doi:10.1103/PhysRevB.7.743