Vol. 169

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-12-12

Rotman Lens Design with Wideband DRA Array

By Mohammad Ranjbar Nikkhah, Manish Hiranandani, and Ahmed A. Kishk
Progress In Electromagnetics Research, Vol. 169, 45-57, 2020
doi:10.2528/PIER20050801

Abstract

For rapid Rotman lens design, the symmetry plane is utilized to reduce the structure size by employing the odd and even mode characteristics. Solutions of half the structure for odd and even modes (short and open walls or electrical and magnetic walls, respectively) are much more efficient than the one-time solution for the whole structure. Then, s-parameters from both solutions are processed to obtain the s-parameters of the full lens. To support the wideband and wide scanning range, DRA array is used because of its ability to support these characteristics. Two examples are considered. The first example that employs four cylindrical DRA elements is built and measured to test the concept of terminating the dummy ports by absorbing materials instead of matching loads. This termination tremendously simplifies the structure and reduces the cost by saving the terminating connectors and the matching loads. Here, thin planar absorbing material is used on top of the microstrip lines of the dummy ports. The simulated and measured results are in good agreement. The second example utilizes 8 rectangular DRA array elements and is studied numerically.

Citation


Mohammad Ranjbar Nikkhah, Manish Hiranandani, and Ahmed A. Kishk, "Rotman Lens Design with Wideband DRA Array," Progress In Electromagnetics Research, Vol. 169, 45-57, 2020.
doi:10.2528/PIER20050801
http://jpier.org/PIER/pier.php?paper=20050801

References


    1. Rotman, W. and R. Turner, "Wide-angle microwave lens for line source applications," IEEE Trans. Antennas Propag., Vol. 11, No. 6, 623-632, Nov. 1963.
    doi:10.1109/TAP.1963.1138114

    2. Lambrecht, A., S. Beer, and T. Zwick, "True-time-delay beamformin with a Rotman-lens for ultrawideband antenna systems," IEEE Trans. Antennas Propag., Vol. 58, No. 10, 3189-3195, Oct. 2010.
    doi:10.1109/TAP.2010.2052558

    3. Archer, D. H. and M. J. Maybell, "Rotman lens development history at Raytheon electronic warfare systems 1967–1995," Proc. IEEE AP-S Int. Symp., Vol. 2B, 31-34, Jul. 2005.

    4. Kim, J., C. S. Cho, and F. S. Barnes, "Dielectric slab Rotman lens for micro/millimeter-wave applications," IEEE Trans. Microw. Theory Tech., , Vol. 53, No. 8, 2622-2627, Aug. 2005.
    doi:10.1109/TMTT.2005.852750

    5. Peterson, A. F. and E. O. Rausch, "Scattering matrix integral equation analysis of the design of a waveguide Rotman lens," IEEE Trans. Antennas Propag., Vol. 47, No. 5, 870-878, May 1999.
    doi:10.1109/8.774150

    6. Chan, K. K. and S. K. Rao, "Design of a Rotman lens feed network to generate a hexagonal lattice of multiple beams," IEEE Trans. Antennas Propag., Vol. 50, 1099-1108, Aug. 2002.
    doi:10.1109/TAP.2002.801292

    7. Yu, M., D. Zhao, Y. Jin, and B. Wang, "Near-field image restoration for Rotman lens by localized angle-time spread function-based filtering method," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 2353-2358, May 2015.
    doi:10.1109/TAP.2015.2408362

    8. Ranjbar Nikkhah, M., M. Hiranandani, A. A. Kishk, and K. Wu, "Fast design of Rotman lens and its application in Rotman-DRA phased array," Proc. IEEE APS Int. Symp., Vancouver, Canada, Jul. 2015.

    9. Luk, K. M. and K. W. Leung, Dielectric Resonator Antenna, Research Studies Press, Baldock, England, 2003.

    10. Petosa, A., Dielectric Resonator Antenna Handbook, 2-3, Artech House, Norwood, MA, USA, 2007.

    11. Ranjbar Nikkhah, M., J. Rashed-Mohassel, and A. A. Kishk, "Compact low-cost phased array of dielectric resonator antenna using parasitic elements and capacitor loading," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 2318-2321, Apr. 2013.
    doi:10.1109/TAP.2012.2237535

    12. Ranjbar Nikkhah, M., P. Loghmanni, J. Rashed-Mohassel, and A. A. Kishk, "Theory of ESPAR design with aperture coupled dielectric resonators and their implementation in large arrays," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 3359-3364, Jun. 2014.
    doi:10.1109/TAP.2014.2309958

    13. Karabey, O. H., A. Mehmood, M. Ayluctarhan, H. Braun, M. Letz, and R. Jakoby, "Liquid crystal based phased array antenna with improved beam scanning capability," Electronics Letters, Vol. 50, No. 6, 426-428, Mar. 13, 2014.
    doi:10.1049/el.2014.0269

    14. CST Microwave Studio, ver. 2013, , CST AG. D-64289 Darmstadt, Germany, 2013.

    15. Chair, R., A. A. Kishk, and K. F. Lee, "Wideband simple cylindrical dielectric resonator antennas," IEEE Microw. Wireless Comput. Lett., Vol. 15, No. 4, 241-243, Apr. 2005.
    doi:10.1109/LMWC.2005.845719

    16. Tekkou, K., M. Ettorre, L. Le Co, and R. Sauleau, "Multibeam SIW slotted waveguide antenna system fed by a compact dual-layer Rotman lens," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 504-514, Feb. 2016.
    doi:10.1109/TAP.2015.2499752

    17. Cheng, Y. J., W. Hong, K. Wu, Z. Q. Kuai, Y. Chen, J. X. Chen, J. Y. Zhou, and H. J. Tang, "Substrate integrated waveguide (SIW) Rotman lens and its band multibeam array antenna applications," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2504-2513, Aug. 2008.
    doi:10.1109/TAP.2008.927567

    18. Lee, W., J. Kim, and Y. J. Yoon, "Compact two-layer Rotman lens-fed microstrip antenna array at 24 GHz," IEEE Trans. Antennas Propag., Vol. 59, No. 2, 460-466, Feb. 2011.
    doi:10.1109/TAP.2010.2096380

    19. Christie, S., R. Cahill, N. B. Buchanan, V. F. Fusco, N. Mitchell, Y. V. Munro, and G. Maxwell-Cox, "Rotman lens-based retrodirective array," IEEE Trans. Antennas Propag., Vol. 60, No. 3, 1343-1351, Mar. 2012.
    doi:10.1109/TAP.2011.2180347