Vol. 161
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-03-26
A Low-Profile Pattern Reconfigurable Antenna System for Automotive MIMO Applications
By
Progress In Electromagnetics Research, Vol. 161, 41-55, 2018
Abstract
This paper presents the design and evaluation of a compact antenna system with pattern reconfigurability at 2.6 GHz. The antenna is based on the concept of an electronically steerable parasitic array radiator (ESPAR), and its height is reduced by top loading. The antenna can generate 10 reconfigurable patterns with a maximal gain of 7.4 dBi. Furthermore, a multiple antenna system consisting of these antennas is proposed. The radiation patterns realized by this multiple-input-multiple-output (MIMO) system are optimized for automotive urban scenarios based on the results of previous research. The S-parameter measurement results of a fabricated prototype correlate with the simulation. Furthermore, 3D measurements of radiation patterns correspond very well with simulation and gain up to 8 dBi is obtained.
Citation
Jerzy Kowalewski, Jude Atuegwu, Jonathan Mayer, Tobias Mahler, and Thomas Zwick, "A Low-Profile Pattern Reconfigurable Antenna System for Automotive MIMO Applications," Progress In Electromagnetics Research, Vol. 161, 41-55, 2018.
doi:10.2528/PIER18010914
References

1. Thiel, A., et al., "Automotive grade MIMO antenna setup and performance evaluation for LTE-communications," 2013 International Workshop on Antenna Technology (iWAT), 171-174, Karlsruhe, 2013.

2. Ekiz, L., A. Posselt, O. Klemp, and C. F. Mecklenbrauker, "System level assessment of vehicular MIMO antennas in 4G LTE live networks," 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), 1-5, Vancouver, BC, 2014.

3. Lankes, T., P. Turban, and F. Mierke, "Evaluation and optimization of LTE MIMO antenna configurations in automotive environment," The 8th European Conference on Antennas and Propagation (EuCAP 2014), 1100-1104, The Hague, 2014.
doi:10.1109/EuCAP.2014.6901962

4. Safin, E., R. Valkonen, and D. Manteuffel, "Reconfigurable LTE MIMO automotive antenna system based on the characteristic mode analysis," 2015 9th European Conference on Antennas and Propagation (EuCAP), 1-3, Lisbon, 2015.

5. Ross, P. E., "Europe’s smart highway will shepherd cars from Rotterdam to Vienna," IEEE Spectrum, Dec. 30, 2014, [online], available: http://spectrum.ieee.org/transportation/advancedcars/europes-smart-highway-will-shepherd-cars-from-rotterdam-to-vienna.

6. Ross, P. E., "World’s first 5G-connected cars Demo’d in Korea," IEEE Spectrum, Nov. 16, 2016, [online], available: http://spectrum.ieee.org/cars-that-think/transportation/infrastructure/koreademos-5gconnected-cars.

7. Reichardt, L., et al., "Using a synthesis methodology for the design of automotive antenna systems," Proceedings of the European Conference on Antennas and Propagation, EuCAP 2013, 1600-1604, Apr. 2013.

8. Mahler, T., L. Reichardt, C. Heine, M. Pauli, and T. Zwick, "Channel based design of systems with multiple antennas," Progress In Electromagnetics Research B, Vol. 64, 63-81, 2015.
doi:10.2528/PIERB15090801

9. Mahler, T., J. Kowalewski, B. Nub, C. Richt, J. Mayer, and T. Zwick, "Channel measurement based antenna synthesis for mobile automotive MIMO communication systems," Progress In Electromagnetics Research B, Vol. 72, 1-16, 2017.
doi:10.2528/PIERB16081502

10. Nguyen, V.-A., et al., "Four-port beam reconfigurable antenna array for pattern diversity system," IET Microwaves, Antennas & Propagation, Vol. 6, No. 10, 1179-1186, Jul. 2012.
doi:10.1049/iet-map.2011.0606

11. Kang, H. and S. Lim, "Electric and magnetic loop mode pattern switchable antenna," 2012 International Symposium on Antennas and Propagation (ISAP), 1337-1340, Nagoys, 2012.

12. Zhang, Y., et al., "A compact dual-mode metamaterial-based loop antenna for pattern diversity," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 394-397, 2015.
doi:10.1109/LAWP.2014.2363847

13. Gyoda, K. and T. Ohira, "Design of electronically steerable passive array radiator (ESPAR) antennas," IEEE Antennas and Propagation Society International Symposium, Transmitting Waves of Progress to the Next Millennium, Vol. 2, 922-925, Salt Lake City, UT, USA, 2000.

14. Zhou, Z., R. S. Adve, and S. V. Hum, "Design and evaluation of pattern reconfigurable antennas for MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1084-1092, Mar. 2014.
doi:10.1109/TAP.2013.2284874

15. Chamok, N. H., M. H. Ylmaz, H. Arslan, and M. Ali, "High-gain pattern reconfigurable MIMO antenna array for wireless handheld terminals," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4306-4315, Oct. 2016.
doi:10.1109/TAP.2016.2598201

16. Kishor, K. K. and S. V. Hum, "A pattern reconfigurable chassis-mode MIMO antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 3290-3298, Jun. 2014.
doi:10.1109/TAP.2014.2313634

17. Rhee, C., et al., "Pattern-reconfigurable MIMO antenna for high isolation and low correlation," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1373-1376, 2014.
doi:10.1109/LAWP.2014.2339012

18. Artner, G., R. Langwieser, and C. F. Mecklenbruker, "Concealed CFRP vehicle chassis antenna cavity," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1415-1418, 2017.
doi:10.1109/LAWP.2016.2637560

19. Nordrum, A., "Autonomous driving experts weigh 5G cellular network against dedicated short range communications," IEEE Spectrum, May 3, 2016, [online], available: http://spectrum.ieee.org/cars-that-think/transportation/self-driving/autonomous-drivingexperts-weigh-5g-cellular-network-against-shortrange-communications-to-connect-cars.

20. Minz, L. and R. Garg, "Reduction of mutual coupling between closely spaced PIFAs," Electronics Letters, Vol. 46, No. 6, 392-394, Mar. 2010.
doi:10.1049/el.2010.3275

21. Chiu, C.-Y., C.-H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1732-1738, 2007.
doi:10.1109/TAP.2007.898618

22. Zhu, F.-G., J. D. Xu, and Q. Xu, "Reduction of mutual coupling between closely-packed antenna elements using defected ground structure," Electronics Letters, Vol. 45, No. 12, 601-602, Jun. 2009.
doi:10.1049/el.2009.0985

23. Caloz, C., H. Okabe, T. Iwai, and T. Itoh, "A simple and accurate model for microstrip structures with slotted ground plane," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 4, 133-135, Apr. 2004.
doi:10.1109/LMWC.2004.828725

24. Votis, C., G. Tatsis, and P. Kostarakis, "Envelope correlation parameter measurements in a MIMO antenna array configuration," Int. J. Commun. Netw. Syst. Sci., Vol. 3, No. 4, 350-354, Apr. 2010.