Vol. 157
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2016-10-26
Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 157, 63-78, 2016
Abstract
Applications of metallic metamaterials have generated significant interest in recent years. Electromagnetic behavior of metamaterials in the optical range is usually characterized by a local-linear response. In this article, we develop a finite-difference time-domain (FDTD) solution of the hydrodynamic model that describes a free electron gas in metals. Extending beyond the local-linear response, the hydrodynamic model enables numerical investigation of nonlocal and nonlinear interactions between electromagnetic waves and metallic metamaterials. By explicitly imposing the current continuity constraint, the proposed model is solved in a self-consistent manner. Charge, energy and angular momentum conservation laws of high-order harmonic generation have been demonstrated for the first time by the Maxwell-hydrodynamic FDTD model. The model yields nonlinear optical responses for complex metallic metamaterials irradiated by a variety of waveforms. Consequently, the multiphysics model opens up unique opportunities for characterizing and designing nonlinear nano devices.
Citation
Ming Fang, Zhixiang Huang, Wei E. I. Sha, Xiaoyan Y. Z. Xiong, and Xian-Liang Wu, "Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials (Invited Paper)," Progress In Electromagnetics Research, Vol. 157, 63-78, 2016.
doi:10.2528/PIER16100401
References

1. Soukoulis, C. M. and M. Wegener, "Past achievements and future challenges in the development of three-dimensional photonic metamaterials," Nature Photonics, Vol. 5, No. 9, 523-530, Jul. 2011.

2. Soukoulis, C. M. and M. Wegener, "Optical metamaterials-more bulky and less lossy," Science, Vol. 330, No. 6011, 1633-1634, Dec. 2010.
doi:10.1126/science.1198858

3. Hess, O., J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, "Active nanoplasmonic metamaterials," Nature Materials, Vol. 11, No. 7, 573-584, Jul. 2012.
doi:10.1038/nmat3356

4. Jarrahi, M., "Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators," IEEE Transactions on Terahertz Science and Technology, Vol. 5, No. 3, 391-397, May 2015.
doi:10.1109/TTHZ.2015.2406117

5. Campbell, S. D. and R. W. Ziolkowski, "Near-field directive beams from passive and active asymmetric optical nanoantennas," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 21, No. 4, 4800112, Jul.–Aug. 2015.

6. Palomba, S., L. Novotny, and R. E. Palmer, "Blue-shifted plasmon resonance of individual sizeselected gold nanoparticles," Optics Communications, Vol. 281, No. 3, 480-483, Feb. 2008.
doi:10.1016/j.optcom.2007.09.056

7. Anderegg, M., B. Feuerbacher, and B. Fitton, "Optically excited longitudinal plasmons in potassium," Physical Review Letters, Vol. 27, 1565, Dec. 1971.
doi:10.1103/PhysRevLett.27.1565

8. Kauranen, M. and A. V. Zayats, "Nonlinear plasmonics," Nature Photonics, Vol. 6, No. 11, 737-748, Nov. 2012.
doi:10.1038/nphoton.2012.244

9. Fan, W., S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Letters, Vol. 6, No. 5, 1027-1030, May 2006.
doi:10.1021/nl0604457

10. Mingaleev, S. F. and Y. S. Kivshar, "Nonlinear transmission and light localization in photoniccrystal waveguides," Journal of the Optical Society of America B-Optical Physics, Vol. 19, No. 9, 2241-2249, Sep. 2002.
doi:10.1364/JOSAB.19.002241

11. Minovich, A. E., A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, "Functional and nonlinear optical metasurfaces," Laser & Photonics Reviews, Vol. 9, No. 2, 195-213, Mar. 2015.
doi:10.1002/lpor.201400402

12. Newell, A. C. and J. V. Moloney, Nonlinear Optics, Addison-Wesley, 1992.

13. Quijada, M., A. G. Borisov, I. Nagy, R. D. Muino, and P. M. Echenique, "Time-dependent densityfunctional calculation of the stopping power for protons and antiprotons in metals," Physical Review A, Vol. 75, No. 4, 042902, Apr. 2007.
doi:10.1103/PhysRevA.75.042902

14. Makitalo, J., S. Suuriniemi, and M. Kauranen, "Boundary element method for surface nonlinear optics of nanoparticles," Optics Express, Vol. 19, No. 23, 23386-23399, Nov. 2011.
doi:10.1364/OE.19.023386

15. Butet, J., B. Gallinet, K. Thyagarajan, and O. J. F. Martin, "Second-harmonic generation from periodic arrays of arbitrary shape plasmonic nanostructures: A surface integral approach," Journal of the Optical Society of America B-Optical Physics, Vol. 30, No. 11, 2970-2979, Nov. 2013.
doi:10.1364/JOSAB.30.002970

16. Bachelier, G., J. Butet, I. Russier-Antoine, C. Jonin, E. Bencichou, and P. F. Brevet, "Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contribution bulk contributions," Physical Review B, Vol. 82, No. 23, 235403, 2010.
doi:10.1103/PhysRevB.82.235403

17. Xiong, X. Y. Z., L. J. Jiang, W. E. I. Sha, Y. H. Lo, and W. C. Chew, "Compact nonlinear Yagi-Uda nanoantennas," Scientific Reports, Vol. 6, 18872, 2016.
doi:10.1038/srep18872

18. Ginzburg, P., A. V. Krasavin, G. A. Wurtz, and A. V. Zayats, "Nonperturbative hydrodynamic model for multiple harmonics generation in metallic nanostructures," ACS Photonics, Vol. 2, No. 1, 8-13, Jan. 2015.
doi:10.1021/ph500362y

19. Hille, A., M. Moeferdt, C. Molff, C. Matssek, R. Rodriguez-Oliveros, C. Prohm, J. Niegemann, S. Grafstrom, L. M. Eng, and K. Busch, "Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model," The Journal of Physical Chemistry, Vol. 120, No. 2, 1163-1169, 2016.

20. Capretti, A., C. Forestiere, L. D. Negro, and G. Miano, "Full-wave analytical solution of secondharmonic generation in metal nanospheres," Plasmonics, Vol. 9, 151-166, Sep. 2013.

21. Sipe, J. E., V. C. Y. So, M. Fukui, and G. I. Stegeman, "Analysis of second-harmonic generation at metal surfaces," Physical Review B, Vol. 21, No. 10, 4389, May 1980.
doi:10.1103/PhysRevB.21.4389

22. Thomas, L. H., "The calculation of atomic fields," Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 23, No. 5, 542-548, 1927.
doi:10.1017/S0305004100011683

23. Huang, Z., T. Koschny, and C. M. Soukoulis, "Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium," Physical Review Letters, Vol. 108, No. 18, 187402, May 2012.
doi:10.1103/PhysRevLett.108.187402

24. Fang, A., T. Koschny, M. Wegener, and C. M. Soukoulis, "Self-consistent calculation of metamaterials with gain," Physical Review B, Vol. 79, No. 24, 241104, Jun. 2009.
doi:10.1103/PhysRevB.79.241104

25. Ahmed, I., H. Chu, W. B. Ewe, E. Li, and Z. Chen, "Modeling and simulation of nano-interconnects for nanophotonics," Electronics Packaging Technology Conference, 436-440, 2007.

26. Fang, M., Z. Huang, Th. Koschny, and C. M. Soukoulis, "Electrodynamic modeling of quantum dot luminescence in plasmonic metamaterials," ACS Photonics, Vol. 2, 558-563, 2016.
doi:10.1021/acsphotonics.5b00499

27. Okoniewski, M. and E. Okoniewska, "Drude dispersion in ADE FDTD revisited," Electronics Letters, Vol. 42, No. 9, 503-504, Apr. 2006.
doi:10.1049/el:20060328

28. Greenwood, A. D., "FDTD models for complex materials," The Open Plasma Journal, Vol. 3, 42-47, 2010.
doi:10.2174/1876534301003020042

29. Fang, M., Z. Huang, and X. Wu, "Quantum electrodynamic modeling of quantum dot luminescence in plasmonic metamaterials," IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization 2015, Ottawa, 2015.

30. Taflove, A. and S. C. Hagness, "Computational Electrodynamics: The Finite-Difference Time- Domain Method," Artecb House, 2005.

31. Tanaka, K., E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, "Multifold enhancement of quantum dot luminescence in plasmonic metamaterials," Physical Review Letters, Vol. 105, No. 22, 227403, Nov. 2010.
doi:10.1103/PhysRevLett.105.227403

32. Berenger, J., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159

33. Konishi, K., T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. K. Gonokami, "Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry," Physical Review Letters, Vol. 112, No. 13, 135502, Apr. 2014.
doi:10.1103/PhysRevLett.112.135502

34. Kelly, S. M., T. J. Jess, and N. C. Price, "How to study proteins by circular dichroism," Biochimica Et Biophysica Acta-Proteins and Proteomics, Vol. 1751, No. 2, 119-139, Aug. 2005.
doi:10.1016/j.bbapap.2005.06.005

35. Wang, Y. H. and N. Gedik, "Circular dichroism in angle-resolved photoemission spectroscopy of topological insulators," Physica Status Solidi-Rapid Research Letters, Vol. 7, No. 1–2, 64-71, Feb. 2013.
doi:10.1002/pssr.201206458

36. Toscano, G., J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. X. Xu, N. A. Mortensen, and M. Wubs, "Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics," Nature Communications, Vol. 6, 7132, May 2015.
doi:10.1038/ncomms8132