Vol. 151
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-03-08
New Efficient Implicit Time Integration Method for DGTD Applied to Sequential Multidomain and Multiscale Problems
By
Progress In Electromagnetics Research, Vol. 151, 1-8, 2015
Abstract
The discontinuous Galerkin's (DG) method is an efficient technique for packaging problems. It divides an original computational region into several subdomains, i.e., splits a large linear system into several smaller and balanced matrices. Once the spatial discretization is solved, an optimal time integration method is necessary. For explicit time stepping schemes, the smallest edge length in the entire discretized domain determines the maximal time step interval allowed by the stability criterion, thus they require a large number of time steps for packaging problems. Implicit time stepping schemes are unconditionally stable, thus domains with small structures can use a large time step interval. However, this approach requires inversion of matrices which are generally not positive definite as in explicit shemes for the first-order Maxwell's equations and thus becomes costly to solve for large problems. This work presents an algorithm that exploits the sequential way in which the subdomains are usually placed for layered structures in packaging problems. Specifically, a reordering of interface and volume unknowns combined with a block LDU (Lower-Diagonal-Upper) decomposition allows improvements in terms of memory cost and time of execution, with respect to previous DGTD implementations.
Citation
Luis E. Tobon, Qiang Ren, Qingtao Sun, Jiefu Chen, and Qing Huo Liu, "New Efficient Implicit Time Integration Method for DGTD Applied to Sequential Multidomain and Multiscale Problems," Progress In Electromagnetics Research, Vol. 151, 1-8, 2015.
doi:10.2528/PIER14112201
References

1. Canouet, N., L. Fezoui, and S. Piperno, "Discontinuous Galerkin time-domain solution of Maxwell’s equations on locally-refined nonconforming cartesian grids," COMPEL: Int. J. for Computation and Maths. in Electrical and Electronic Eng., Vol. 24, No. 4, 1381-1401, 2005.
doi:10.1108/03321640510615670

2. Xiao, T. and Q. H. Liu, "Three-dimensional unstructured-grid discontinuous Galerkin method for Maxwell’s equations with well-posed perfectly matched layer," Microw. Opt. Technol. Lett., Vol. 46, No. 5, 459-463, 2005.
doi:10.1002/mop.21016

3. Hesthaven, J. S. and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Vol. 54, Vol. 54, Springer, 2007.

4. Lee, J.-H. and Q. H. Liu, "A 3-D spectral-element time-domain method for electromagnetic simulation," IEEE Trans. Microw. Theory Techn., Vol. 55, No. 5, 983-991, 2007.
doi:10.1109/TMTT.2007.895398

5. Lee, J.-H., J. Chen, and Q. H. Liu, "A 3-D discontinuous spectral element time-domain method for Maxwell’s equations," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2666-2674, 2009.
doi:10.1109/TAP.2009.2027731

6. Chen, J. and Q. H. Liu, "A hybrid spectral-element/finite-element method with the implicit-explicit Runge-Kutta time stepping scheme for multiscale computation," IEEE Intl. Symposium on Antennas and Propagation (APSURSI), 1-4, 2010.
doi:10.1155/2010/564357

7. Chen, J., Q. H. Liu, M. Chai, and J. A. Mix, "A nonspurious 3-D vector discontinuous Galerkin finite-element time-domain method," IEEE Micro. Wireless Comp. Lett., Vol. 20, No. 1, 1-3, 2010.
doi:10.1109/LMWC.2009.2035941

8. Chen, J., L. Tobon, M. Chai, J. Mix, and Q. H. Liu, "Efficient implicit-explicit time stepping scheme with domain decomposition for multiscale modeling of layered structures," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 1, No. 9, 1438-1446, 2011.
doi:10.1109/TCPMT.2011.2162726

9. Tobon, L., J. Chen, and Q. H. Liu, "Multilayer microwave filter design using a locally implicit discontinuous Galerkin finite-element time-domain (DG-FETD) method," 2011 IEEE Intl. Symposium on Antennas and Propagation (APSURSI), 2972-2975, 2011.
doi:10.1109/APS.2011.5997153

10. Courant, R., K. Friedrichs, and H. Lewy, "On the partial difference equations of mathematical physics," IBM. J. Res. Dev., Vol. 11, No. 2, 215-234, 1967.
doi:10.1147/rd.112.0215

11. Sun, G. and C. W. Trueman, "Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell’s equations," Electron. Lett., Vol. 39, No. 7, 595-597, 2003.
doi:10.1049/el:20030416

12. Sun, G. and C. W. Trueman, "Unconditionally-stable FDTD method based on Crank-Nicolson scheme for solving three-dimensional Maxwell equations," Electron. Lett., Vol. 40, No. 10, 2004.
doi:10.1049/el:20040420

13. Sun, G. and C. W. Trueman, "Efficient implementations of the Crank-Nicolson scheme for the finite-difference time-domain method," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 5, 2275-2284, 2006.
doi:10.1109/TMTT.2006.873639

14. Yang, Y., R. S. Chen, and E. K. N. Yung, "The unconditionally stable Crank-Nicolson FDTD method for three-dimensional Maxwell’s equations," Micro. Opt. Techn. Lett., Vol. 48, No. 8, 1619-1622, 2006.
doi:10.1002/mop.21684

15. Chen, R. S., L. Du, Z. Ye, and Y. Yang, "An efficient algorithm for implementing the Crank-Nicolson scheme in the mixed finite-element time-domain method," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 3216-3222, 2009.
doi:10.1109/TAP.2009.2028675

16. Nedelec, J. C., "Mixed finite elements in R3," Numer. Math., Vol. 35, No. 3, 315-341, 1980.
doi:10.1007/BF01396415

17. Bossavit, A., "Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism," Proc. Inst. Elect. Eng., Vol. 135, No. 8, 493-500, 1988.

18. Lee, J.-H., T. Xiao, and Q. H. Liu, "A 3-D spectral-element method using mixed-order curl conforming vector basis functions for electromagnetic fields," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 1, 437-444, 2006.
doi:10.1109/TMTT.2005.860502

19. Chen, J. and Q. H. Liu, "A non-spurious vector spectral element method for Maxwell’s equations," Progress In Electromagnetics Research, Vol. 96, 205-215, 2009.
doi:10.2528/PIER09082705

20. Shankar, V., A. H. Mohammadian, and W. F. Hall, "A time-domain, finite-volume treatment for the Maxwell equations," Electromagnetics, Vol. 10, 127-145, 1990.
doi:10.1080/02726349008908232

21. Mohammadian, A. H., V. Shankar, and W. F. Hall, "Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure," Comput. Phys. Commun., Vol. 68, 175-196, 1991.
doi:10.1016/0010-4655(91)90199-U

22. Liu, Q. H., "The PSTD algorithm: A time-domain method requiring only two cells per wavelength," Microw. Opt. Techn. Lett., Vol. 15, No. 3, 158-165, 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3