Vol. 150
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-01-12
A Study on the Biocompatibility of Surface-Modified Au/Ag Alloyed Nanobox Particles in Zebrafish in Terms of Mortality Rate, Hatch Rate and Imaging of Particle Distribution Behavior
By
Progress In Electromagnetics Research, Vol. 150, 89-96, 2015
Abstract
We report, for the first time, a study on the biocompatibility of the poly(ethylene glycol)-thiol (PEG)-coated Au/Ag alloyed nanobox (PC-ANB) particles in zebrafish. We measured the mortality rate and the hatch rate of the zebrafish embryos injected with the PC-ANB particles and observed the distribution of the PC-ANB particles in the zebrafish embryos at different stages of growth development. The results show that the PC-ANB particles have negligible toxicity to the zebrafish embryos even at extra-high concentration (1.2 mg ml-1), while uncoated Ag nanoparticles, used in the form of nanospheres or nanoplates, were found to cause embryo deformation or even death. Additionally, we have investigated the distribution of the PC-ANB particles within the zebrafish in the interest of studying their behavior in the zebrafish using imaging. For this, we used the three-photon luminescence imaging technique and it has been found that the PC-ANB particles mainly assemble in the backside muscle tissues of the zebrafish, suggesting that the PC-ANB particles are mostly metabolized out after about 96 hours of growth development.
Citation
Kanghui Li, Xinyuan Zhao, Yixing Zhai, Guangdi Chen, El-Hang Lee, and Sailing He, "A Study on the Biocompatibility of Surface-Modified Au/Ag Alloyed Nanobox Particles in Zebrafish in Terms of Mortality Rate, Hatch Rate and Imaging of Particle Distribution Behavior," Progress In Electromagnetics Research, Vol. 150, 89-96, 2015.
doi:10.2528/PIER14092602
References

1. Hou, W. and S. B. Cronin, "A review of surface plasmon resonance-enhanced photocatalysis," Advanced Functional Materials, Vol. 23, No. 13, 1612-1619, 2013.
doi:10.1002/adfm.201202148

2. Anker, J. N., et al. "Biosensing with plasmonic nanosensors," Nature Materials, Vol. 7, No. 6, 442-453, 2008.
doi:10.1038/nmat2162

3. Qian, J., et al. "Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging," Biomaterials, Vol. 32, No. 6, 1601-1610, 2011.
doi:10.1016/j.biomaterials.2010.10.058

4. Till, , J. H., et al. "Direct electrical evidence of plasmonic near-field enhancement in small molecule organic solar cells," The Journal of Physical Chemistry C, Vol. 118, No. 28, 15128-15135, 2014.
doi:10.1021/jp5025087

5. Zhang, Y., et al. "Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging," Angewandte Chemie International Edition, Vol. 52, No. 4, 1148-1151, 2013.
doi:10.1002/anie.201207909

6. Aherne, D., et al. "Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature," Advanced Functional Materials, Vol. 18, No. 14, 2005-2016, 2008.
doi:10.1002/adfm.200800233

7. Aherne, D., et al. "From Ag nanoprisms to triangular AuAg nanoboxes," Advanced Functional Materials, Vol. 20, No. 8, 1329-1338, 2010.
doi:10.1002/adfm.200902030

8. Liu, X. W., J. Lin, T. F. Jiang, Z. F. Zhu, Q. Q. Zhan, J. Qian, and S. He, "Surface plasmon properties of hollow AuAg alloyed triangular nanoboxes and its applications in SERS imaging and potential drug delivery," Progress In Electromagnetics Research, Vol. 128, 35-53, 2012.
doi:10.2528/PIER12041908

9. Bar-Ilan, O., et al. "Toxicity assessments of Au and Ag nanoparticles in zebrafish embryos," SMALL, Vol. 5, No. 16, 1897-1910, 2009.
doi:10.1002/smll.200801716

10. Lee, , K. J., et al. "In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos," ACS Nano, Vol. 1, No. 2, 133-143, 2007.
doi:10.1021/nn700048y

11. Wang, Y. L., et al. "Biocompatibility and biodistribution of surface-enhanced raman scattering nanoprobes in zebrafish embryos: In vivo and multiplex imaging," ACS Nano, Vol. 4, No. 7, 4039-4053, 2010.
doi:10.1021/nn100351h

12. Asharani, P. V., et al. "Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos," Nanotoxicology, Vol. 5, No. 1, 43-54, 2011.
doi:10.3109/17435390.2010.489207

13. Li, K. H., et al. "Nonlinear optical properties of Au/Ag alloyed nanoboxes and their applications in both in vitro and in vivo bioimaging under long-wavelength femtosecond laser excitation," RSC Advances, Vol. 5, No. 4, 2851-2856, 2015.
doi:10.1039/C4RA10752G

14. George, S., et al. "Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos," ACS Nano, Vol. 6, No. 5, 3745-3759, 2012.
doi:10.1021/nn204671v

15. Pan, Y., et al. "High-sensitivity real-time analysis of nanoparticle toxicity in green fluorescent protein-expressing zebrafish," SMALL, Vol. 9, No. 6, 863-869, 2013.
doi:10.1002/smll.201201173

16. Fenaroli, F., et al. "Nanoparticles as drug delivery system against tuberculosis in zebrafish embryos: Direct visualization and treatment," ACS Nano, Vol. 8, No. 7, 7014-7026, 2014.
doi:10.1021/nn5019126

17. Kimmel, C. B., et al. "Stages of embryonic development of the zebrafish," Developmental Dynamics, Vol. 203, No. 3, 253-310, 1995.
doi:10.1002/aja.1002030302

18. Tong, L. and J. X. Chen, "Label-free imaging through nonlinear optical signals," Materials Today, Vol. 14, No. 6, 264-273, 2011.
doi:10.1016/S1369-7021(11)70141-9

19. Tong, L., et al. "Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity," Angewandte Chemie International Edition, Vol. 49, No. 20, 3485-3488, 2010.
doi:10.1002/anie.201000440

20. Horton, N. G., et al. "In vivo three-photon microscopy of subcortical structures within an intact mouse brain," Nature Photonics, Vol. 7, No. 3, 205-209, 2013.
doi:10.1038/nphoton.2012.336