Vol. 145
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-04-01
Investigation on Microwave Polarimetric Scattering from Two-Dimensional Wind Fetch- and Water Depth-Limited Nearshore Sea Surfaces
By
Progress In Electromagnetics Research, Vol. 145, 251-261, 2014
Abstract
The microwave polarimetric scattering from two-dimensional (2-D) wind fetch- and water depth-limited nearshore sea surface is investigated by using the second-order small-slope approximation (SSA-II). The sea waves are simulated by taking into account the influences of fetch and depth. Based on this, the joint influence of fetch and depth on the normalized radar cross section (NRCS) of sea surfaces for both co-polarizations and cross-polarization in different wind directions is mainly studied. Monostatic and bistatic numerical results both indicate that in the marine environment of small depth and large fetch, the nonlinear interactions among waves become more intense, which has a greater impact on NRCSs for co-polarizations than their cross-polarized counterparts. Comparison of the results for different wind directions also reflects that the backscattered echoes along wind direction have much greater strength, regardless of the magnitude of wind fetch and water depth.
Citation
Ding Nie, Min Zhang, and Ning Li, "Investigation on Microwave Polarimetric Scattering from Two-Dimensional Wind Fetch- and Water Depth-Limited Nearshore Sea Surfaces," Progress In Electromagnetics Research, Vol. 145, 251-261, 2014.
doi:10.2528/PIER14022505
References

1. Kitaigorodskii, S. A., V. P. Krasitskii, and M. M. Zaslavskii, "On Phillips' theory of equilibrium range in the spectra of wind-generated gravity waves," J. Phys. Oceanogr., Vol. 5, No. 3, 410-420, 1975.
doi:10.1175/1520-0485(1975)005<0410:OPTOER>2.0.CO;2

2. Schroeder, L. C., P. R. Scha®ner, J. L. Mitchell, and W. L. Jones, "AAFE RADSCAT 13.9-GHz measurements and analysis: Wind-speed signature of the ocean," IEEE J. Ocean. Eng., Vol. 10, No. 4, 346-357, 1985.
doi:10.1109/JOE.1985.1145123

3. Wentz, F. J., S. Peteherich, and L. A. Thomas, "A model function for ocean radar cross-section at 14.6 GHz," J. Geophys. Res., Vol. 89, 3689-3704, 1984.
doi:10.1029/JC089iC03p03689

4. Zhang, Y. M., Y. H. Wang, and L. X. Guo, "Study of scattering from time-varying Gerstners sea surface using second-order small slope approximation," Chin. Phys. B, Vol. 19, No. 5, 054103, 2010.
doi:10.1088/1674-1056/19/5/054103

5. Bringer, A., B. Chapron, A. Mouche, and C. A. Guerin, "Revisiting the short-wave spectrum of the sea surface in the light of the weighted curvature approximation," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 1, 679-689, 2014.
doi:10.1109/TGRS.2013.2243459

6. Luo, H. J., G. D. Yang, Y. H. Wang, J. C. Shi, and Y. Du, "Numerical studies of sea surface scattering with the GMRES-RP method," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 4, 2064-2073, 2014.
doi:10.1109/TGRS.2013.2257800

7. Isoguchi, O. and M. Shimada, "A L-band ocean geophysical model function derived from PALSAR," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 7, 1925-1936, 2009.
doi:10.1109/TGRS.2008.2010864

8. McDaniel, S. T., "Microwave backscatter from non-Gaussian seas," IEEE Trans. Geosci. Remote Sens., Vol. 41, No. 1, 811-817, 2003.
doi:10.1109/TGRS.2002.808069

9. Young, I. R., S. Zieger, and A. V. Babmin, "Global trends in wind speed and wave height," Science, Vol. 332, No. 6028, 451-455, 2011.
doi:10.1126/science.1197219

10. uncan, J. W., W. C. Keller, and J. W. Wright, "Fetch and windspeed dependence of Doppler spectra," Radio Sci., Vol. 9, 809-819, 1974.
doi:10.1029/RS009i010p00809

11. Hasselmann, S., K. Hasselmann, J. H. Allender, and T. P. Barnett, "Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part II: Parameterizations of the nonlinear energy transfer for application in wave models," J. Phys. Oceanogr., Vol. 15, 1378-1391, 1978.

12. Bouws, E., H. Gunther, W. Rosenthal, and C. L. Vincent, "Similarity of the wind wave spectrum in finite depth water: 1. Spectral form," J. Geophys. Res., Vol. 90, 975-986, 1985.
doi:10.1029/JC090iC01p00975

13. Voronovich, A. G. and V. U. Zavorotny, "Theoretical model for scattering of radar signals in Ku-and C-bands from a rough sea surface with breaking waves," Waves Random Media, Vol. 11, 247-269, 2001.

14. Elfouhaily, T. M. and C. A. Guerin, "A critical survey of approximate scattering wave theories from random rough surfaces," Waves Random Media, Vol. 14, R1-R40, 2004.
doi:10.1088/0959-7174/14/4/R01

15. Hasselmann, K., et al. "Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)," Dtsch. Hydrogr. Z. Suppl., Vol. 12, No. A8, 1-95, 1973.

16. Elfouhaily, T. M., B. Chapron, K. Katsaros, and D. Vandemark, "A unified directional spectrum for long and short wind-driven waves," J. Geophys. Res., Vol. 102, 15781-15796, 1997.
doi:10.1029/97JC00467

17. McCormick, M. E., Ocean Engineering Wave Mechanics, John Wiley & Sons Inc., New York, 1973.

18. Nie, D., M. Zhang, C. Wang, and H. C. Yin, "Study of microwave backscattering from two-dimensional nonlinear surfaces of finite-depth seas," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 11, 4349-4357, 2012.
doi:10.1109/TGRS.2012.2194716

19. Young, I. R. and L. A. Verhagen, "The growth of fetch limited waves in water of finite depth. Part 1. Total energy and peak frequency," Coast. Eng., Vol. 29, 47-78, 1996.
doi:10.1016/S0378-3839(96)00006-3

20. Bourlier, C., "Azimuthal harmonic coe±cients of the microwave backscattering from a non-Gaussian ocean surface with the first-order SSA model," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 11, 2600-2611, 2004.
doi:10.1109/TGRS.2004.836874

21. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves, John Wiley & Sons Inc., New York, 2001.

22. Toporkov, J. V. and G. S. Brown, "Numerical study of the extended Kirchhoff approach and the lowest order small slope approximation for scattering from ocean-like surfaces: Doppler analysis," IEEE Trans. Antennas Propag., Vol. 50, No. 4, 417-425, 2002.
doi:10.1109/TAP.2002.1003376

23. Ross, D. and W. L. Jones, "On the relationship of radar backscatter to wind speed and fetch," Bound Layer Meteorol., Vol. 13, 151-163, 1978.
doi:10.1007/BF00913868

24. Ward, K. D. and R. Tough, "Modelling radar sea clutter in littoral environments," 2008 IEEE International Conference on Radar, 82-87, 2008.
doi:10.1109/RADAR.2008.4653896