Vol. 141
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-07-09
Multiband Multimode Arched Bow-Shaped Fractal Helix Antenna
By
Progress In Electromagnetics Research, Vol. 141, 47-78, 2013
Abstract
A novel circular arc fractus named Arched Bow-shaped Fractal Curve (ABFC) is originally proposed. Four ABFCs are connected end-to-end, forming so called Arched Bow-shaped Fractal Loop (ABFL). The loop antenna peculiarly presents multiband multimode characteristics with resonance compression. The normal mode, which is pertinent to the loop area and circumference, is found improved with the iterative procedure. Thus, an eight-turned wire helix of small pitch angle (α=3 °) with a circular disc ground called Arched Bow-shaped Fractal Helix (ABFH) antenna is shaped from K2 ABFLs. It can unprecedentedly operate in multiband of axial and off-axial modes with dual-sensed circular polarizations and high gain. Four matched bands (|S11|≤-10 dB) are obtained within 2 GHz-8 GHz, of which f1=2.34 GHz (400 MHz, 17.09%; G=10.63 dBi; RHCP), f2=4.24 GHz (770 MHz, 18.16%; G=12.43 dBi; LHCP), f3=5.48 GHz (300 MHz, 5.47%; G=8.13 dBi; RHCP), and f4=6.98 GHz (960 MHz, 13.75%; G=15.89 dBi; RHCP). The unique multiband multimode property has been theoretically analyzed with illustrations and can be attributed to existence of the fractal boundary, which particularly encloses multiple equivalent loops with considerable areas. These peculiarities make K2 ABFH antenna a very attractive candidate for multiband circularly polarized antennas, especially for space applications, such as spacecrafts communication, remote sensing, and telemetry, where reduction of quantity, height and weight of antennas are urgently wanted. It can also be configured into large array for higher gain service like radars and radio astronomy.
Citation
Daotie Li, and Jun-Fa Mao, "Multiband Multimode Arched Bow-Shaped Fractal Helix Antenna," Progress In Electromagnetics Research, Vol. 141, 47-78, 2013.
doi:10.2528/PIER13050903
References

1. Cohen, N., "Fractal antennas: Part 1," Communications Quarterly, 7-22, Aug. 1995.

2. Cohen, N., "Fractal antenna applications in wireless telecommunications," IEEE Electronics Industries Forum of New England, 43-49, May 1997.

3. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman, New York, 1983.

4. Werner, D. H., R. L. Haup, and P. L. Werner, "Fractal antenna engineering: The theory and design of fractal antenna arrays," IEEE Antennas and Propagation Magazine, Vol. 41, No. 5, 37-58, Oct. 1999.
doi:10.1109/74.801513

5. Gianvitorio, J. and Y. Rahmat, "Fractal antennas: A novel antenna miniaturization technique and applications," IEEE Antennas and Propagation Magazine, Vol. 44, No. 1, 20-36, Feb. 2002.
doi:10.1109/74.997888

6. Anguera, J., C. Puente, C. Borja, and J. Soler, "Fractal-shaped antennas: A review," Wiley Encyclopedia of RF and Microwave Engineering, Vol. 2, 1620-1635, Apr. 2005.

7. Liu, Y., S. Gong, and D. Fu, "The advances in development of ractal antennas," Chinese Journal of Radio Science, Vol. 17, No. 1, Feb. 2002.

8. Vinoy, K. J., "Fractal shaped antenna elements for wide and multi band wireless applications,", The Graduate School College of Engineering, The Pennsylvania State University, Aug. 2002.

9. Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, 2nd Edition, John Wiley & Son, Inc., New York, 2003.

10. Baliarda, C. P., J. Romeu, and A. Cardama, "The Koch monopole: A small fractal antenna," IEEE Trans. on Antennas and Propaga., Vol. 48, No. 11, 1773-1781, Nov. 2000.
doi:10.1109/8.900236

11. Li, D. T. and J. F. Mao, "A Koch-like sided bow-tie fractal dipole antenna," IEEE Trans. on Antennas and Propaga., Vol. 60, No. 5, 40-49, May 2012.
doi:10.1109/MAP.2012.6348117

12. Mirzapour, B. and H. R. Hassani, "Size reduction and bandwidth enhancement of snowflake fractal antenna," IET Microwave Antennas Propag., Vol. 2, No. 2, 180-187, Mar. 2008.
doi:10.1049/iet-map:20070133

13. Mahatthanajatuphat, C., S. Saleekaw, and P. Akkaraekthalin, "A rhombic patch monopole antenna with modified Minkowski fractal geometry for UMTS, WLAN, and mobile WiMAX application," Progress In Electromagnetics Research, Vol. 89, 57-74, 2009.
doi:10.2528/PIER08111907

14. Gonzalez-Arbesu, J. M., S. Blanch, and J. Romeu, "The Hilbert curve as a small self-resonant monopole from a practical point of view," Microwave and Optical Technology Letters, Vol. 39, No. 1, 45-49, Oct. 2003.
doi:10.1002/mop.11122

15. Zhu, J., A. Hoorfar, and N. Engheta, "Bandwidth, cross polarization and feed-point characteristics of matched Hilbert antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 2, No. 1, 2-5, Jan. 2003.
doi:10.1109/LAWP.2003.810765

16. Werner, D. H., W. Kuhirun, and P. L. Werner, "The Peano-Gosper fractal array," IEEE Trans. on Antennas and Propaga., Vol. 51, No. 8, 2063-2072, Aug. 2003.
doi:10.1109/TAP.2003.815411

17. Zhu, J., A. Hoorfar, and N. Engheta, "Peano antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 71-74, Jan. 2004.

18. Puente, C., J. Romeu, R. Pous, and A. Cardama, "On the behavior of the Sierpinski multiband fractal antenna," IEEE Trans. on Antennas and Propaga., Vol. 46, 517-524, Apr. 1998.
doi:10.1109/8.664115

19. Oraizi, H. and S. Hedayati, "Miniaturized UWB monopole microstrip antenna design by the combination of Giusepe Peano and Sierpinski carpet fractals," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 67-70, 2011.
doi:10.1109/LAWP.2011.2109030

20. Kumar, R. and P. N. Chaubey, "On the design of inscribed pentagonal-cut fractal antenna for ultra-wideband applications," Microwave and Optical Technology Letters, Vol. 53, No. 12, Dec. 2011.
doi:10.1002/mop.26415

21. Li, D. T. and J. F. Mao, "Koch-like sided Sierpinski gasket multifractal dipole antenna," Progress In Electromagnetics Research, Vol. 26, 399-427, 2012.
doi:10.2528/PIER12010404

22. Li, D. T. and J. F. Mao, "Sierpinskized Koch-like sided multifractal dipole antenna," Progress In Electromagnetics Research, Vol. 13, 207-224, 2012.

23. Kraus, J. D. and R. J. Marhefka, Antennas: For All Application, 3rd Edition, McGraw-Hill, Nov. 2001.

24. Kraus, J. D., "The helical antenna," Proceedings of the IRE, Vol. 37, No. 3, 263-272, Mar. 1949.
doi:10.1109/JRPROC.1949.231279

25. Kraus, J. D. and J. C. Williamson, "Characteristics of helical antennas radiating in the axial mode," Journal of Applied Physics, Vol. 19, No. 1, 87-96, Jan. 1948.
doi:10.1063/1.1697878

26. Yousaf, J., M. Amin, and S. Iqbal, "Design of circularly polarized omnidirectional bifilar helix antennas with optimum wide axial ratio beamwidth," Progress In Electromagnetics Research C, Vol. 39, 119-132, 2013.

27. Amin, M., J. Yousaf, and M. K. Amin, "Terrestrial mode quadrifilar helix antenna," Progress In Electromagnetics Research Letters, Vol. 27, 179-187, 2011.
doi:10.2528/PIERL11081202

28. Weeratumanoon, E., "Helical antennas with truncated spherical geometry,", The Virginia Polytechnic Institute and State University, Blacksburg, Virginia, Jan. 27, 2000.

29. Gharibi, H. and F. H. Kashani, "Design of a wideband monopulse antenna using four conical helix antennas," Progress In Electromagnetics Research Letters, Vol. 29, 25-33, 2012.
doi:10.2528/PIERL11111106

30. Best, S. R., "The fractal loop antenna: A comparison of fractal and non-fractal geometries," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 146-149, Jul. 2001.