Vol. 140
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-06-09
An Integrated Simulation Approach and Experimental Research on Microwave Induced Thermo-Acoustic Tomography System
By
Progress In Electromagnetics Research, Vol. 140, 385-400, 2013
Abstract
Microwave induced thermo-acoustic tomography (MITAT) has great potential in early breast cancer detection because it utilizes the advantages of both microwave imaging and ultrasound imaging. In this paper, we develop a fast and efficient simulation approach based on a hybrid method which combines finite integration time domain (FITD) method and pseudo-spectral time domain (PSTD) method is developed. By using this approach, energy deposition of biology tissue illuminated by electromagnetic fields can be accurately simulated. Meanwhile, acoustic properties of the tissue can be efficiently simulated as well. Compared to traditional methods, such as finite difference time domain (FDTD), et al, the developed method can well process real 3-D electromagnetic-acoustic complex models. Based on this approach, a MITAT model is created and some simulated results are analyzed. Furthermore, some real breast tissues are adopted to perform the thermo-acoustic imaging experiment. Comparisons between experimental and simulated results are made. The feasibility and effectiveness of the proposed approach are demonstrated by both numerical simulations and experimental results.
Citation
Jian Song, Zhiqin Zhao, Jinguo Wang, Xiaozhang Zhu, Jiangniu Wu, Zai-Ping Nie, and Qing Huo Liu, "An Integrated Simulation Approach and Experimental Research on Microwave Induced Thermo-Acoustic Tomography System," Progress In Electromagnetics Research, Vol. 140, 385-400, 2013.
doi:10.2528/PIER13041704
References

1. American Cancer Society, , Cancer facts and figures 2007, Online, 2007, http://www.cancer.org.

2. Guo, B., J. Li, H. Zmuda, and M. Sheplak, "Multifrequency microwave-induced thermal acoustic imaging for breast cancer detection," IEEE Transactions on Biomedical Engineering, Vol. 54, No. 11, 2000-2010, 2007.
doi:10.1109/TBME.2007.895108

3. Wang, X., D. R. Bauer, R. Witte, and H. Xin, "Microwave-induced thermoacoustic imaging model for potential breast cancer detection," IEEE Transactions on Biomedical Engineering, Vol. 59, No. 10, 2782-2791, 2012.
doi:10.1109/TBME.2012.2210218

4. Guo, B., Y. W. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," PIERS Online, Vol. 1, No. 3, 350-353, 2005.

5. Liao, K.-F., X.-L. Zhang, and J. Shi, "Fast 3-D microwave imaging method based on subaperture approximation," Progress In Electromagnetics Research, Vol. 126, 333-353, 2012.
doi:10.2528/PIER12011106

6. Qi, Y., W. Tan, Y. Wang, W. Hong, and Y. Wu, "3D bistatic omega-K imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry," Progress In Electromagnetics Research, Vol. 121, 409-431, 2011.
doi:10.2528/PIER11090205

7. Tan, W., W. Hong, Y. Wang, and Y. Wu, "A novel spherical-wave three-dimensional imaging algorithm for microwave cylindrical scanning geometries," Progress In Electromagnetics Research, Vol. 111, 43-70, 2011.
doi:10.2528/PIER10100307

8. Giamalaki, M. I. and I. S. Karanasiou, "Enhancement of a microwave radiometry imaging system's performance using left handed materials," Progress In Electromagnetics Research, Vol. 117, 253-265, 2011.

9. Zhao, Z. Q., J. Song, X. Z. Zhu, J. G. Wang, J. N. Wu, Y. L. Liu, Z. P. Nie, and Q. H. Liu, "System development of microwave induced thermo-acoustic tomography and experiments on breast tumor," Progress In Electromagnetics Research, Vol. 134, 323-336, 2013.

10. Zhu, X. Z., Z. Q. Zhao, J. G. Wang, J. Song, and Q.-H. Liu, "Microwave induced thermal acoustic tomography for breast tumor based on compressive sensing ," IEEE Transactions on Biomedical Engineering, Vol. 60, No. 5, 1298-1307, May 2013.
doi:10.1109/TBME.2012.2233737

11. Kruger, R. A., K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Breast cancer in vivo: Contrast enhancement with thermo-acoustic CT at 434MHz --- Feasibility study," Radiology, Vol. 216, No. 1, 279-283, Jul. 2000.

12. Geng, K. and L. V. Wang, "Scanning microwave-induced thermo-acoustic tomography: Signal, resolution, and contrast ," Med. Phys., Vol. 28, No. 1, 4-10, 2001.
doi:10.1118/1.1333409

13. Nie, L., D. Xing, Q. Zhou, D. Yang, and H. Guo, "Microwave-induced thermoacoustic scanning CT for high-contrast and noninvasive breast cancer imaging," Med. Phys., Vol. 35, No. 9, 4026-4032, Sep. 2008.
doi:10.1118/1.2966345

14. Xu, M. and L. V.Wang, "Time-domain reconstruction for thermo-acoustic tomography in a spherical geometry," IEEE Trans. Med. Imag., Vol. 21, No. 7, 814-822, Jul. 2002.

15. Razanksy, D., S. Kellnberger, and V. Ntziachristos, "Near-field radiofrequency thermoacoustic tomography with impulse excitation," Med. Phys., Vol. 37, No. 9, 4602-4607, 2010.
doi:10.1118/1.3467756

16. Kellnberger, S., A. Hajiaboli, D. Razansky, and V. Ntziachristos, "Near-field thermoacoustic tomography of small animals," Phys. Med. Biol., Vol. 56, No. 11, 3433-3444, 2011.
doi:10.1088/0031-9155/56/11/016

17. Bauer, D., X. Wang, J. Vollin, H. Xin, and R. Witte, "Spectroscopic thermoacoustic imaging of water and fat composition," Appl. Phys. Lett., Vol. 101, 033705, 2012.
doi:10.1063/1.4737414

18. University of Wisconsin Computational Electromagnetics, 2007, Available: http://uwcem.ece.wisc.edu/home.htm.

19. Xie, Y., B. Guo, J. Li, G. Ku, and L. V. Wang, "Adaptive and robust methods of reconstruction (ARMOR) for thermoacoustic tomography," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2741-2752, 2008.
doi:10.1109/TBME.2008.919112

20. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 65-87, 2001.
doi:10.2528/PIER00080103

21. Treeby, B. E. and B. T. Cox, "k-wave: MATLAB toolbox for the simulation and reconstruction of photo-acoustic wave fields," Journal of Biomedical Optics, Vol. 15, No. 2, 021314, 2010.
doi:10.1117/1.3360308

22. Liu, Q. H., "The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 45, No. 4, 1044-1055, 1998.
doi:10.1109/58.710587

23. Cox, B. T., J. G. Laufer, K. P. Köstli, and P. C. Beard, "Experimental validation of photoacoustic k-space propagation models," Photons Plus Ultrasound: Imaging and Sensing 2004, Proc. SPIE 5320 , 238-248, 2004.
doi:10.1117/12.531178

24. Weiwad, W., A. Heining, L. Goetz, et al. "Direct measurement of sound velocity in various specimens of breast tissue," Invest. Radiol., Vol. 35, 721-726, 2000.
doi:10.1097/00004424-200012000-00005

25. Mast, T. D., "Empirical relationship between acoustic parameters in human soft tissue ," Acoust. Res. Lett., Vol. 1, 37-42, 2009.

26. Fink, M. and C. Prada, "Acoustic time-reversal mirrors," Inv. Probl., Vol. 17, No. 1, 1-38, 2001.
doi:10.1088/0266-5611/17/1/201

27. Xu, Y. and L. V. Wang, "Time reversal and its application to tomography with diffracting sources," Phys. Rev. Lett., Vol. 92, No. 3, 1-4, 2004.
doi:10.1103/PhysRevLett.92.033902

28. Chen, G. P. and Z. Q. Zhao, "Ultrasound tomography-guide TRM technique for breast tumor detecting in MITAT system," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1459-1471, 2010.
doi:10.1163/156939310792149650

29. Lazebnik, M., "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, No. 20, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002