Vol. 140
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-06-27
Circularly Arced Koch Fractal Multiband Multimode Monopole Antenna
By
Progress In Electromagnetics Research, Vol. 140, 653-680, 2013
Abstract
Circularly arced Koch fractal curve (CAKC) is originally proposed. Then, a novel wire dipole is formed with Ki-iterated CAKC. The dipole is experimentally studied for fractal electrical characteristics revealing. It manifests many unique properties, such as multiband resonance at odd times of half-wavelength. In particular, it unprecedentedly presents normal mode (0.5.λ) and axial mode (1.5.λ) simultaneously. Thus, K2 CAKC wire is configured into folded monopole with circular disc ground for omni-directional and directive radiation. Five matched bands (S11≤-10 dB) are obtained within 1 GHz-10 GHz, of which f1=1.31 GHz, f2=3.14 GHz, f3=3.63 GHz, f4=4.65 GHz, and f5=7.71 GHz. Compared with conventional wire monopole (0.25.λ), this fractal monopole shows 31% height reduction. It has dipole-like patterns at f1 and f2, endfire patterns at f3 and f4 with high gain (10 dBi), and off-endfire patterns at f5. Moreover, the fractal antenna possesses compactness, lightweight, simplicity, and low cost. So, it is an attractive candidate for multiband and multifunction antennas, such as satellite antennas, of which omni-directional normal mode and directive axial mode are needed for beaconing and communication respectively.
Citation
Daotie Li, and Jun-Fa Mao, "Circularly Arced Koch Fractal Multiband Multimode Monopole Antenna," Progress In Electromagnetics Research, Vol. 140, 653-680, 2013.
doi:10.2528/PIER13040401
References

1. Cohen, N., "Fractal antennas: Part 1," Communications Quarterly, 7-22, Aug. 1995.

2. Cohen, N., "Fractal antenna applications in wireless telecommunications," IEEE Electronics Industries Forum of New England, 43-49, May 1997.

3. Werner, D. H., R. L. Haup, and P. L. Werner, "Fractal antenna engineering: The theory and design of fractal antenna arrays," IEEE Antennas and Propagation Magazine, Vol. 41, No. 5, 37-58, Oct. 1999.
doi:10.1109/74.801513

4. Werner, D. H. and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas and Propagation Magazine, Vol. 45, No. 1, 38-57, Feb. 2003.
doi:10.1109/MAP.2003.1189650

5. Gianvitorio, J. and Y. Rahmat, "Fractal antennas: A novel antenna miniaturization technique and applications," IEEE Antennas and Propagation Magazine, Vol. 44, No. 1, 20-36, Feb. 2002.
doi:10.1109/74.997888

6. Anguera, J., C. Puente, C. Borja, and J. Soler, "Fractal-shaped antennas: A review," Wiley Encyclopedia of RF and Microwave Engineering, Vol. 2, 1620-1635, Apr. 2005.

7. Liu, Y., S. Gong, and D. Fu, "The advances in development of fractal antennas," Chinese Journal of Radio Science, Vol. 17, No. 1, Feb. 2002.

8. Puente, C., J. Romeu, R. Pous, and A. Cardama, "On the behavior of the Sierpinski multiband fractal antenna," IEEE Transactions on Antennas and Propagation, Vol. 46, 517-524, Apr. 1998.
doi:10.1109/8.664115

9. Sinha, S. N. and M. Jain, "A self-affine fractal multiband antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 110-112, Apr. 2007.
doi:10.1109/LAWP.2007.891519

10. Manimegalai, B., S. Raju, and V. Abhaikumar, "A multifractal Cantor antenna for multiband wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 359-362, Aug. 2009.
doi:10.1109/LAWP.2008.2000828

11. Mandelbrot, B. B., The Fractal Geometry of Nature, 2nd Ed., W. H. Freeman, New York, 1983.

12. Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, 2nd Ed., John Wiley & Son, Inc, New York, 2003.

13. Baliarda, C. P., J. Romeu, and A. Cardama, "The Koch monopole: A small fractal antenna," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 11, 1773-1781, Nov. 2000.
doi:10.1109/8.900236

14. Li, D. and J. F. Mao, "A Koch-like sided bow-tie fractal dipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 40-49, May 2012.

15. Mirzapour, B. and H. R. Hassani, "Size reduction and bandwidth enhancement of snowflake fractal antenna," IET Microwaves, Antennas and Propagation, Vol. 2, No. 2, 180-187, Mar. 2008.
doi:10.1049/iet-map:20070133

16. Mahatthanajatuphat, C., S. Saleekaw, P. Akkaraekthalin, and M. Krairiksh, "A rhombic patch monopole antenna with modified Minkowski fractal geometry for UMTS, WLAN, and mobile WiMAX application ," Progress In Electromagnetics Research, Vol. 89, 57-74, 2009.
doi:10.2528/PIER08111907

17. Oraizi, H. and S. Hedayati, "Miniaturized UWB monopole microstrip antenna design by the combination of Giusepe Peano and Sierpinski carpet fractals," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 67-70, 2011.
doi:10.1109/LAWP.2011.2109030

18. Ghatak, R., A. Karmakar, and D. R. Poddar, "A circularshaped Sierpinski carpet fractal UWB monopole antenna with band rejection capability," Progress In Electromagnetics Research C, Vol. 24, 221-234, 2011.
doi:10.2528/PIERC11082801

19. Ghatak, R., A. Karmakar, and D. R. Poddar, "Hexagonal boundary Sierpinski carpet fractal shaped compact ultrawideband antenna with band rejection functionality," Int J. Electron Commun (AEÜ), Vol. 67, 250-255, 2013.
doi:10.1016/j.aeue.2012.08.007

20. Li, D. and J. F. Mao, "Sierpinskized Koch-like sided multifractal dipole antenna," Progress In Electromagnetics Research, Vol. 130, 204-227, Aug. 2012.

21. Vinoy, K. J., "Fractal shaped antenna elements for wide and multiband wireless applications," [D] The Graduate School College of Engineering, The Pennsylvania State University, Aug. 2002.

22. Zhu, J., A. Hoorfar, and N. Engheta, "Peano antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 71-74, 2004.

23. Gonzalez-Arbesu, J. M., S. Blanch, and J. Romeu, "The Hilbert curve as a small self-resonant monopole from a practical point of view," Microwave and Optical Technology Letters, Vol. 39, No. 1, 45-49, Oct. 2003.
doi:10.1002/mop.11122

24. Zhu, J., A. Hoorfar, and N. Engheta, "Bandwidth, cross polarization and feed-point characteristics of matched Hilbert antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 2, No. 1, 2-5, Jan. 2003.
doi:10.1109/LAWP.2003.810765

25. Vinoy, K. J., J. K. Abraham, and V. K. Varadan, "On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 9, 2296-2303, Sep. 2003.
doi:10.1109/TAP.2003.816352

26. Li, D. and J. F. Mao, "Koch-like sided Sierpinski gasket multifractal dipole antenna," Progress In Electromagnetics Research, Vol. 26, 399-427, Apr. 2012.
doi:10.2528/PIER12010404

27. http://www.radio-electronics.com/info/antennas/dipole/folded d ipole.php.

28. Patnam, R. H., "Broadband CPW-fed planar Koch fractal loop antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 7, No. 2, 429-431, May 2008.
doi:10.1109/LAWP.2008.2001968

29. Mustafa, K. T., "Combined fractal dipole wire antenna," The Second International ITG Conference on Antennas, Vol. 2, 176-180, Mar. 2007.

30. Best, S. R., "A discussion on the significance of geometry in determining the resonant behavior of fractal and other non-Euclidean wire antennas," IEEE Antennas and Propagation Magazine, Vol. 45, No. 3, 9-28, Jun. 2003.
doi:10.1109/MAP.2003.1232160

31. Werner, D. H., R. L. Haupt, and P. L. Werner, "Fractal antenna engineering: The theory and design of fractal antenna arrays," IEEE Antennas and Propagation Magazine, Vol. 41, No. 5, 37-58, Oct. 1999.
doi:10.1109/74.801513

32. Siakavara, K., "Hybrid-fractal direct radiating antenna arrays with small number of elements for satellite communications," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 6, 2102-2106, Jun. 2010.
doi:10.1109/TAP.2010.2046868

33. Werner, D. H., W. Kuhirun, and P. L. Werner, "The Peano-Gosper fractal array," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 2063-2072, Aug. 2003.
doi:10.1109/TAP.2003.815411

34. Altshuler, E. E., "Hemispherical coverage using a double-folded monopole," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 8, 1112-1119, Aug. 1996.
doi:10.1109/8.511819

35. Jung, J., K. Seol, W. Choi, and J. Choi, "Wideband monopole an- tenna for various mobile communication applications," Electronics Letters, Vol. 41, No. 24, 1313-1214, Nov. 2005.
doi:10.1049/el:20053114

36. Lee, W. S., K. S. Oh, and J. W. Yu, "A wideband planar monopole antenna array with circular polarized and band-notched characteristics," Progress In Electromagnetics Research, Vol. 128, 381-398, 2012.

37. Liu, J., K. P. Esselle, S. G. Hay, and S. S. Zhong, "Study of an extremely wideband monopole antenna with triple band-notched charactersistics," Progress In Electromagnetics Research, Vol. 123, 143-158, 2012.
doi:10.2528/PIER11110401

38. Xu, H. X., G. M. Wang, Y. Y. Lv, M. Q. Qi, X. Gao, and S. Ge, "Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit," Progress In Electromagnetics Research, Vol. 137, 705-725, 2013.