Vol. 139
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-05-13
Pmm-GA Method to Synthesize Quasi-Optical Frequency Selective Surface on Sio2 Substrate
By
Progress In Electromagnetics Research, Vol. 139, 599-610, 2013
Abstract
A satellite-borne frequency selective surface (FSS) for atmospheric sensing application is presented. This brand new type of band-pass filter has an operating frequency at 183 GHz, which is a typical frequency on H2O absorption line. Comprising an ultra-thin gilding layer and a SiO2 substrate layer, this complex periodic component exhibits an extremely low insertion loss (< 0.22 dB) and high isolation (> 20 dB) between closely spaced frequency channels of 45° incident wave. Periodic Method of Moment (PMM) approach is applied to determine the initial geo-metrical parameters of FSS unit cell, and the optimization approach based on the Genetic Algorithm (GA) enables us to obtain the requisite spectral response and transmission characteristics for both TE and TM polarization. The experimental results show that the proposed PMM-GA technique is effective for analyzing space-borne FSS at millimeter wave range.
Citation
Bu Gang Xia, Jin Meng, De Hai Zhang, and Jin Sheng Zhang, "Pmm-GA Method to Synthesize Quasi-Optical Frequency Selective Surface on Sio2 Substrate," Progress In Electromagnetics Research, Vol. 139, 599-610, 2013.
doi:10.2528/PIER13032703
References

1. Wu, T. K., Frequency Selective Surface and Grid Array, Wiley, New York, 1995.

2. Munk, B. A., "Frequency Selective Surfaces: Theory and Design," Wiley, New York, 2000.

3. Zhang, J.-C., Y.-Z. Yin, and J.-P. Ma, "Design of narrow band-pass frequency selective surfaces for millimeter wave applications," Progress In Electromagnetics Research, Vol. 96, 287-298, 2009.
doi:10.2528/PIER09081702

4. Nguyen, T. K., T. A. Ho, I. Park, and H. Han, "Full-wavelength dipole antenna on a GaAs membrane covered by a frequency selective surface for a terahertz photomixer," Progress In Electromagnetics Research, Vol. 131, 441-455, 2012.

5. Wu, X., Z.-B. Pei, S.-B. Qu, Z. Xu, J.-Q. Zhang, H. Ma, and X.-H. Wang, "Design and experimental Verification of band-pass Frequency Selective Surface Based on metamaterial Effective Medium Theory," Journal of Infrared and Millimeter Waves, Vol. 30, No. 5, 469-474, 2011.
doi:10.3724/SP.J.1010.2011.00469

6. Zhu, X., W. Shao, J.-L. Li, and Y.-L. Dong, "Design and optimization of low RCS patch antennas based on a genetic algorithm," Progress In Electromagnetics Research, Vol. 122, 327-339, 2012.
doi:10.2528/PIER11100703

7. Jian, L., G. Xu, J. Song, H. Xue, D. Zhao, and J. Liang, "Optimum design for improving modulating-effect of coaxial magnetic gear using response surface methodology and genetic algorithm," Progress In Electromagnetics Research, Vol. 116, 297-312, 2011.

8. Monacelli, B., J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, "Infrared frequency selective surface based on circuit-analog square loop design," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 2, 745-752, 2005.
doi:10.1109/TAP.2004.841290

9. Weile, D. S. and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: A review," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 343-353, 1997.
doi:10.1109/8.558650

10. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305

11. Biber, S., M. Bozzi, O. Gunther, L. Perregrini, and L. P. Schmidt, "Design and testing of frequency selective surfaces on thick silicon substrate operating at 600 GHz," IEEE Microwave Conference, Vol. 1, European, 2005.

12. Ohira, M., H. Deguchi, M. Tsuji, and H. Shigesawa, "Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 2925-2931, 2004.
doi:10.1109/TAP.2004.835289

13. Monorchio, A., G. Manara, U. Serra, G. Marola, and E. Pagana, "Design of waveguide filters by using genetically optimized frequency selective surfaces," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 6, 407-409, 2005.
doi:10.1109/LMWC.2005.850482

14. Gingrich, M. A. and D. H. Werner, "Synthesis of low/zero index of refraction metamaterials from frequency selective surfaces using genetic algorithms," Electronics Letters, Vol. 41, No. 23, 1266-1267, 2005.
doi:10.1049/el:20053004

15. Djabery, R., S. Nikmehr, and S. Hosseinzadeh, "Grating effects on sidelobe suppression in MIM plasmonic filters," Progress In Electromagnetics Research, Vol. 135, 271-280, 2013.

16. Brennan, P. V., A. Narayanan, and R. Benjamin, "Grating lobe control in randomised, sparsely populated MIMO radar arrays," IET Radar, Sonar & Navigation, Vol. 6, No. 7, 587-594, 2012.
doi:10.1049/iet-rsn.2010.0347

17. Manara, G., A. Monorchio, and R. Mittra, "Frequency selective surface design based on genetic algorithm," Electronics Letters, Vol. 35, No. 17, 1400-1401, 1999.
doi:10.1049/el:19990991

18. Min, K. I., S. H. Ha, S. W. Lee, and Y. H. Moon, "Transmission loss allocation algorithm using path-integral based on transaction strategy," IEEE Transactions on Power Systems, Vol. 25, No. 1, 195-205, 2010.
doi:10.1109/TPWRS.2009.2030349

19. Raynolds, J. E., B. A. Munk, J. B. Pryor, and R. J. Marhefka, "Ohmic loss in frequency-selective surfaces," Journal of Applied Physics, Vol. 93, No. 9, 5346-5358, 2003.
doi:10.1063/1.1565189

20. Su, J., X.-W. Xu, M. He, and K. Zhang, "Integral-equation analysis of frequency selective surfaces using Ewald transformation and lattice symmetry," Progress In Electromagnetics Research, Vol. 121, 249-269, 2011.
doi:10.2528/PIER11081902