Vol. 137
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-02-19
An Ultra-Low Loss Split Ring Resonator by Suppressing the Electric Dipole Moment Approach
By
Progress In Electromagnetics Research, Vol. 137, 239-254, 2013
Abstract
We propose an effective way to realize the ultra-low loss in a split ring resonator (SRR) by suppressing the electric dipole moment approach. To tremendously reduce the loss, the loss mechanism of the SRR is theoretically analyzed in detail. The nonuniform current distribution on the SRR loop results in the residual electric dipole moment and thus brings the high radiation losses. Three different SRR configurations that the lumped capacitor, the distributed capacitor and the dielectric medium are incorporated into the SRR metamaterial are conceived, by which the uniform current distribution can be observed. This leads to in a finite bandwidth deviated from the resonance frequency where the SRR's loss performance dramatically improves owing to suppression of the residual electric dipole moment. The proposed the loss reduction mechanism has potential applications in negative and zero index memataterials, especially at THz frequencies and in the optical regime.
Citation
Lei Zhu, Fan-Yi Meng, Fang Zhang, Jiahui Fu, Qun Wu, Xu Min Ding, and Joshua Le-Wei Li, "An Ultra-Low Loss Split Ring Resonator by Suppressing the Electric Dipole Moment Approach," Progress In Electromagnetics Research, Vol. 137, 239-254, 2013.
doi:10.2528/PIER12121703
References

1. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

2. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

3. Liu, S.-H. and L.-X. Guo, "Negative refraction in an anisotropic metamaterial with a rotation angle between the principal axis and the planar interface," Progress In Electromagnetics Research, Vol. 115, 243-257, 2011.

4. Meng, F.-Y., Y.-L. Li, K. Zhang, Q. Wu, and J. L.-W. Li, "A detached zero index metamaterial lens for antenna gain enhancement," Progress In Electromagnetics Research, Vol. 132, 463-478, 2012.

5. Burlak, G., "Spectrum of cherenkov radiation in dispersive metamaterials with negative refraction index," Progress In Electromagnetics Research, Vol. 132, 149-158, 2012.

6. Li, F.-Q. Yang, and J. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

7. Shao, J., H. Zhang, Y. Lin, and H. Xin, "Dual-frequency electromagnetic cloaks enabled by LC-based metamaterial circuits," Progress In Electromagnetics Research, Vol. 119, 225-237, 2011.
doi:10.2528/PIER11052507

8. He, X.-J., Y. Wang, J.-M. Wang, and T.-L. Gui, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.

9. M. R. I., M. T. Islam, and N. Misran, "Design analysis of new metamaterial for EM absorption reduction," Progress In Electromagnetics Research, Vol. 124, 119-135, 2012.
doi:10.2528/PIER11112301

10. Sabah, C. and H. G. Roskos, "Design of a terahertz polarization rotator based on a periodic sequence of chiral-metamaterial and dielectric slabs," Progress In Electromagnetics Research, Vol. 124, 301-314, 2012.
doi:10.2528/PIER11112605

11. Xie, Y., J. Jiang, and S. He, "Proposal of cylindrical rolled-up metamaterial lenses for magnetic resonance imaging application and preliminary experimental demonstration," Progress In Electromagnetics Research, Vol. 124, 151-162, 2012.
doi:10.2528/PIER11121402

12. Zarifi, D., H. Oraizi, and M. Soleimani, "Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers," Progress In Electromagnetics Research, Vol. 123, 337-354, 2012.
doi:10.2528/PIER11110506

13. Chen, H., L. Huang, X. Cheng, and H. Wang, "Magnetic properties of metamaterial composed of closed rings," Progress In Electromagnetics Research, Vol. 115, 317-326, 2011.

14. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

15. Kuznetsov, S. A., A. G. Paulish, A. V. Gelfand, A. Lazorskiy, and V. N. Fedorinin, "Matrix structure of metamaterial absorbers for multispectral terahertz imaging," Progress In Electromagnetics Research, Vol. 122, 93-103, 2012.
doi:10.2528/PIER11101401

16. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

17. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced non-linear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

18. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite media with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

19. Zhou, X., Y. H. Liu, and X. Zhao, "Low losses left-handed materials with optimized electric and magnetic resonance," Applied Physics A, Vol. 98, 643-649, 2010.
doi:10.1007/s00339-009-5458-x

20. Garcia-Meca, C., R. Ortuno, R. Salvador, A. Martinez, and J. Marti, "Low-loss single-layer metamaterial with negative index of refraction at visible wavelengths," Optics Express, Vol. 15, 9320-9325, 2007.
doi:10.1364/OE.15.009320

21. Zhou, J., Th. Koschny, and C. M. Soukoulis, "An efficient way to reduce losses of left-handed metamaterials," Optics Express, Vol. 16, 11147-11152, 2008.
doi:10.1364/OE.16.011147

22. Zhao, Y. X., F. Chen, Q. Shen, Q. W. Liu, and L. M. Zhang, "Optimizing low loss negative index metamaterial for visible spectrum using differential evolution," Optics Express, Vol. 19, 11605-11614, 2011.
doi:10.1364/OE.19.011605

23. Bossard, J. A., S. Yun, D. H. Werner, and T. S. Mayer, "Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithms," Optics Express, Vol. 17, 14771-14779, 2009.
doi:10.1364/OE.17.014771

24. Bratkovsky, A., E. Ponizovskaya, S.-Y. Wang, P. Holmstrm, L. Thylen, Y. Fu, and H. Agren, "A metal-wire/quantum-dot composite metamaterial with negative ε and compensated optical loss," Applied Physics Letters, Vol. 93, 193106, 2008.
doi:10.1063/1.3013331

25. Fang, A., Z. X. Huang, T. Koschny, and C. M. Soukoulis, "Overcoming the losses of a split ring resonator array with gain," Optics Express, Vol. 19, 12688-12699, 2011.
doi:10.1364/OE.19.012688

26. Shen, J.-Q., "Gain-assisted negative refractive index in a quantum coherent medium," Progress In Electromagnetics Research, Vol. 133, 37-51, 2013.

27. Tassin, L. Z., T. Koschny, E. N. Economou, and C. M. Soukoulis, "Low loss metamaterials based on classical electromagnetically induced transparency," Physical Review Letters, Vol. 102, 051901, 2009.
doi:10.1103/PhysRevLett.102.053901

28. Zhu, L., F. Y. Meng, J. H. Fu, and Q. Wu, "Electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes," Journal of Physics D: Applied Physics, Vol. 45, 445105, 2012.
doi:10.1088/0022-3727/45/44/445105

29. Zhu, L., F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, "An approach to configure low-loss and full transmission metamaterial based on electromagnetically induced transparency," IEEE Transactions on Magnetics, Vol. 48, 4285-4288, 2012.
doi:10.1109/TMAG.2012.2200661

30. Liu, N., L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the drude damping limit," Nature Materials, Vol. 8, 758-762, 2009.
doi:10.1038/nmat2495

31. Zhu, L., F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, "Multi-band slow light metamaterial," Optics Express, Vol. 20, 4494-4502, 2012.
doi:10.1364/OE.20.004494

32. Zhu, L., L. Dong, F. Y. Meng, J. H. Fu, and Q. Wu, "Influence of symmetry breaking in a planar metamaterial on transparency effect and sensing application," Applied Optics, Vol. 51, 7794-7799, 2012.
doi:10.1364/AO.51.007794

33. Meng, F. Y., F. Zhang, K. Zhang, and Q. Wu, "Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency," IEEE Transactions on Magnetics, Vol. 47, 3347-3350, 2011.
doi:10.1109/TMAG.2011.2151271

34. Li, T. Q., H. Liu, T. Li, S. M. Wang, J. X. Cao, Z. H. Zhu, Z. G. Dong, S. N. Zhu, and X. Zhang, "Suppression of radiation loss by hybridization effect in two coupled split-ring resonators," Physical Review B, Vol. 80, 115113, 2009.
doi:10.1103/PhysRevB.80.115113

35. Meng, F. Y., J. H. Fu, K. Zhang, Q. Wu, J. Y. Kim, J. J. Choi, B. Lee, and J. C. Lee, "Metamaterial analogue of electromagnetically induced transparency in two orthogonal directions," Journal of Physics D: Applied Physics, Vol. 44, 265402, 2011.
doi:10.1088/0022-3727/44/26/265402

36. Papasimakis, N., V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, "Metamaterial analog of electromagnetically induced transparency," Physical Review Letters, Vol. 101, 253903, 2008.
doi:10.1103/PhysRevLett.101.253903

37. Tsakmakidis, K. L., M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, "Negative-permeability electromagnetically induced transparent and magnetically active metamaterials," Physical Review B, Vol. 81, 195128, 2010.
doi:10.1103/PhysRevB.81.195128

38. Szabo, Z., G.-H. Park, R. Hedge, and E. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, 2646-2653, 2010.
doi:10.1109/TMTT.2010.2065310

39. Erentok, A., R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, et al. "Low frequency lumped element-based negative index metamaterial," Applied Physics Letters, Vol. 91, 184104, 2007.
doi:10.1063/1.2803771

40. Ban, Y.-L., J.-H. Chen, S.-C. Sun, J. L.-W. Li, and J.-H. Guo, "Printed wideband antenna with chip-capacitor-loaded inductive strip for LTE/GSM/UMTS WWAN wireless USB dongle applications," Progress In Electromagnetics Research, Vol. 128, 313-329, 2012.

41. Lai, A., T. Itoh, and C. Caloz, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 5, 3450, 2004.
doi:10.1109/MMW.2004.1337766

42. Gil, M., J. Bonache, J. Garcia-Garcia, J. Martel, and F. Martin, "Composite right/left-handed metamaterial transmission lines based on complementary split-rings resonators and their applications to very wideband and compact filter design," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 1296-1304, 2007.
doi:10.1109/TMTT.2007.897755

43. Alley, G. D., "Interdigital capacitors and their application to lumped element microwave integrated circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 18, 1028-1033, 1970.
doi:10.1109/TMTT.1970.1127407