Vol. 135
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-12-10
Hybrid Simulation Technique for Characterizing Wireless Channel in Medical Environments
By
Progress In Electromagnetics Research, Vol. 135, 17-35, 2013
Abstract
The purpose of this paper is to investigate the use of simulation technology for the analysis of wireless propagation channel in medical environments. In this paper, the channel modeling has been carried out by using an effective simulation platform, which combines full-wave Method of Moments and adaptive ray tracing technique. Base on this, the channel characteristics involving both large-scale and small-scale parameters of a wireless network deployed within a hospital environment can be estimated. Also, it is straightforward to predict the levels of electromagnetic field interference produced from the network infrastructure. The simulated results of four scenarios of medical environment, such as the patient room, the operating room, a particular level of the hospital, and the cardiac stress test room, with different wireless technologies used show the advantage and capability of the presented simulation approach.
Citation
Priscilla Rong Shu Lee, and Viet Phuong Bui, "Hybrid Simulation Technique for Characterizing Wireless Channel in Medical Environments," Progress In Electromagnetics Research, Vol. 135, 17-35, 2013.
doi:10.2528/PIER12102109
References

1. Asano, , S., G. Yamamoto, and , "Light scattering by a spheroidal particle," Appl. Opt., Vol. 14, 29-49, 1975.

2. Asano, , S., , "light scattering properties of spheroidal particles," Appl. Opt., Vol. 18, 712-723, 1979.
doi:10.1364/AO.18.000712

3. Sebak, , A. R., B. P. Sinha, and , "Scattering by a conducting spheroidal object with dielectric coating at axial incidence," IEEE Trans. on Antennas and Propag., Vol. 40, 268-273, 1992.
doi:10.1109/8.135468

4. Wang, , D. S., P. W. Barber, and , "Scattering by inhomogeneous nonspherical objects," Appl. Opt., Vol. 14, 29-49, 1975.

5. Li, , L.-W., M.-S. Leong, T.-S. Yeo, and Y.-B. Gan, "Electro-magnetic radiation from a prolate spheroidal antenna enclosed in a confocal spheroidal radome ," IEEE Trans. on Antennas and Propag., Vol. 50, 1525-1533, 2002.
doi:10.1109/TAP.2002.804026

6. Barton, , J. P., , "Internal, near-surface, and scattered electromag-netic ¯elds for a layered spheroid with arbitrary illumination," Appl. Opt., Vol. 40, 3596-3607, 2001.

7. Han, , Y. P., Z. S. Wu, and , "Scattering of a spheroidal particle illuminated by a Gaussian beam,", Vol. 40, 2501-2509, 2001.
doi:10.1364/AO.40.002501

8. Zhang, , H. Y., Y. P. Han, and , "Scattering by a confocal multilayered spheroidal particle illuminated by an axial Gaussian beam," IEEE Trans. on Antennas and Propag.,, Vol. 53, 1514-1518, 2005.
doi:10.1109/TAP.2005.844449

9. Xu, F., K. F. Ren, and X. Cai, , "Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates," J. Opt. Soc. Am. A, Vol. 24, 109-118, , 2007.
doi:10.1364/JOSAA.24.000109

10. Xu, , F., K. F. Ren, G. Gouesbet, G. Grehan, and X. Cai, "Generalized Lorenz-Mie theory for an arbitrarily oriented, located, and shaped beam scattered by homogeneous spheroid," J. Opt. Soc. Am. A, Vol. 24, 119-131, 2007.
doi:10.1364/JOSAA.24.000119

11. Mackay, , T. G., A. Lakhtakia, and , "Simultaneous negative-and-positive-phase-velocity propagation in an isotropic chiral medium," Microw. Opt. Technol. Lett., Vol. 49, 1245-1246, 2007.
doi:10.1002/mop.22434

12. Wongkasem, N., A. Akyurtlu, and , "Light splitting effects in chiral metamaterials," J. Opt., Vol. 12, 035101, 2010.
doi:10.1088/2040-8978/12/3/035101

13. Li, J., F. Q. Yang, and J. F. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

14. Zarifi, D., H. Oraizi, and M. Soleimani, "Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers," Progress In Electromagnetics Research, Vol. 123, 337-354, 2012.
doi:10.2528/PIER11110506

15. Dong, J. F., J. Li, and F. Q. Yang, , "Guided modes in the four-layer slab waveguide containing chiral nihility core," Progress In Electromagnetics Research,, Vol. 112, 241-255, 2011.

16. Sabah, , C., H. G. Roskos, and , "Design of a terahertz polarization rotator based on a periodic sequence of chiral-metamaterial and dielectric slabs," Progress In Electromagnetics Research,, Vol. 124, 301-314, 2012.
doi:10.2528/PIER11112605

17. Kluskens, , M. S., E. H. Newman, and , "Scattering by a multilayer chiral cylinder," IEEE Trans. on Antennas and Propag., Vol. 39, 91-96, 1991.
doi:10.1109/8.64441

18. Khatir, B. N., M. Al-Kanhal, and A. Sebak, "Electromagnetic wave scattering by elliptic chiral cylinder," Journal of Electro-magnetic Waves and Applications,, Vol. 20, No. 10, 1377-1390, 2006.
doi:10.1163/156939306779276866

19. Lakhtakia, , A., V. K. Varadan, and V. V. Varadan, "Scattering and absorption characteristics of lossy dielectric, chiral, nonspher-ical objects," Appl. Opt.,, Vol. 24, 4146-4154, 1985.
doi:10.1364/AO.24.004146

20. Demir, , V., A. Elsherbeni, D. Worasawate, and E. Arvas, "A graphical user interface (GUI) for plane-wave scattering from a conducting, dielectric, or chiral sphere," IEEE Trans. Antennas Propagation Magazine, Vol. 46, 94-99, 2004.
doi:10.1109/MAP.2004.1388838

21. Worasawate, , D., J. R. Mautz, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body," IEEE Trans. on Antennas and Propag. , Vol. 51, 1077-1084, 2003.
doi:10.1109/TAP.2003.811501

22. Semichaevsky, , A., A. Akyurtlu, D. Kern, D. H. Werner, and M. G. Bray, "Novel BI-FDTD approach for the analysis of chiral cylinders and spheres ," IEEE Trans. on Antennas and Propag. , Vol. 54, 925-932, 2006.
doi:10.1109/TAP.2006.869898

23. Yokota, , M., S. He, and T. Takenaka, "Scattering of a Hermite-Gaussian beam field by a chiral sphere," J. Opt. Soc. Am. A,, Vol. 18, 1681-1689, 2001.
doi:10.1364/JOSAA.18.001681

24. Zhang, , H. Y., Z. X. Huang, and Y. F. Sun, "Scattering of a Gaussian beam by a conducting spheroidal particle with non-confocal dielectric coating," IEEE Trans. on Antennas and Propag.,", Vol. 59, 4371-4374, 2011.

25. Sun, , X. M., H. H.Wang, and H. Y. Zhang, , "Scattering of Gaussian beams by a spheroidal particle," Progress In Electromagnetics Research, Vol. 128, 539-555, 2012.

26. Davis, , L. W., "Theory of electromagnetic beam," Phys. Rev. A,, Vol. 19, 1177-1179, 1979.
doi:10.1103/PhysRevA.19.1177

27. Gouesbet, , G., J. A. Lock, and G. Grehan, , "Generalized Lorenz-Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review," Journal of Quantitative Spectroscopy and Radiative Transfer,, Vol. 112, 1-27, 2011.
doi:10.1016/j.jqsrt.2010.08.012