Vol. 128
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-05-30
Improved Thermal Ablation Efficacy Using Magnetic Nanoparticles: a Study in Tumor Phantoms
By
Progress In Electromagnetics Research, Vol. 128, 229-248, 2012
Abstract
Magnetic heating used for inducing hyperthermia and thermal ablation is particularly promising in the treatment of cancer provided that the therapeutic temperature is kept constant during the treatment time throughout the targeted tissue and the healthy surrounding tissues are maintained at a safe temperature. The present study shows the temperature increment produced by different concentrations of magnetic nanoparticles (ferrofluid and magnetoliposomes) inside a phantom, after irradiating tissue-mimicking materials (phantoms) with a minimally invasive coaxial antenna working at a frequency of 2.45 GHz. This frequency was chosen because maximum dielectric loss of water molecules begins at 2.4 GHz and because this is an ISM (industrial, scientific and medical) frequency. Temperature sensors were placed inside and outside the tumor phantom to assess the focusing effect of heat produced by nanoparticles. Results have shown that the temperature increments depend on the nanoparticles concentration. In this way, a temperature increment of more than 56 ºC was obtained with a ferrofluid concentration of 13.2 mg/mL, whereas the increment in the reference phantom was only of ≈ 21 ºC. Concerning the magnetoliposomes, the temperature achieved was similar to that obtained with the ferrofluid but at a lesser concentration of nanoparticles. These results demonstrate that it is possible to achieve higher temperatures and to focus energy where the nanoparticles are located.
Citation
Sonia García-Jimeno, Rocío Ortega-Palacios, Mario Francisco Cepeda-Rubio, Arturo Vera, Lorenzo Leija-Salas, and Joan Estelrich, "Improved Thermal Ablation Efficacy Using Magnetic Nanoparticles: a Study in Tumor Phantoms," Progress In Electromagnetics Research, Vol. 128, 229-248, 2012.
doi:10.2528/PIER12020108
References

1. Miltenyi, S., W. Muller, W. Weichel, and A. Radbruch, "High gradient magnetic cell separation with MACS," Cytometry, Vol. 11, 231-238, 1990.
doi:10.1002/cyto.990110203

2. Radbruch, A., B. Mechtold, A. Thiel, S. Miltenyi, and E. Pfluger, "High-gradient magnetic cell sorting," Methods in Cellular Biology, Vol. 42, 387-403, 1994.
doi:10.1016/S0091-679X(08)61086-9

3. Safarik, I. and M. Safarikova, "Use of magnetic techniques for the isolation of cells," Journal of Chromatography B: Biomedical Sciences and Applications, Vol. 722, 33-53, 1999.
doi:10.1016/S0378-4347(98)00338-7

4. Swan, H., Thermoregulation and Bioenergetics, Elsevier, Amsterdam,1974.

5. Suit, H. and M. Shwayder, "Hyperthermia: Potential as an antitumour agent," Cancer, Vol. 34, 122-129, 1974.
doi:10.1002/1097-0142(197407)34:1<122::AID-CNCR2820340118>3.0.CO;2-R

6. Hahn, G., Hyperthermia and Cancer, Plenum Press, New York,1982.

7. Kettering, M., J. Winter, M. Zeisberger, S. Bremer-Streck,H. Oehring, C. Bergemann, C. Alexiou, R. Hergt, K. J. Halbhuber,W. A. Kaiser, and I.Hilger, "Magnetic nanoparticles as bimodal tools in magnetically induced labeling and magnetic heating of tumour cells: An in vitro study," Nanotechnology, Vol. 18, 175101,2007.

8. Simon, C. J., D. E. Dupuy, and W. W. Mayo-Smith, "Microwave ablation: Principles and applications," Radio Graphics, Vol. 25, S69-S83, 2005.

9. Safarik, I. and M. Safarikova, "Magnetic nanoparticles in biosciences," Monatschefte für Chemie, Vol. 133, 737-759, 2002.

10. Saiyed, Z. M., S. D. Telang, and C. N. Ramchand, "Application of magnetic techniques in the field of drug discovery and biomedicine," BioMagnetic Research and Technology, Vol. 1, 2,2003.

11. Diederich, C. J., "Thermal ablation and high-temperature thermal therapy: Overview of technology and clinical implementation," International Journal of Hyperthermia, Vol. 21, 745-753, 2005.
doi:10.1080/02656730500271692

12. Oura, S., T. Tamaki, I. Hirai, T. Yoshimasu, F. Ohta,R. Nakamura, and Y. Okamura, "Radiofrequency ablation therapy in patients with breast cancers two centimeters or less in size," Breast Cancer, Vol. 14, 48-54, 2007.
doi:10.2325/jbcs.14.48

13. Rosensweig, R. E., "Heating magnetic fluid with alternating magnetic field," Journal of Magnetism and Magnetic Materials, Vol. 252, 370-374, 2002.
doi:10.1016/S0304-8853(02)00706-0

14. Rovers, S. A., R. Hoogenbomm, M. F. Kemmere, and J. T. F. Keurentjes, "Relaxation processes of superparamagnetic iron oxide nanoparticles in liquid and incorporated in poly (methyl methacrylate)," Journal of Physical Chemistry C, Vol. 112, 15643-15646, 2008.
doi:10.1021/jp805631r

15. Pankurst, Q. A., J. Connolly, S. K. Jones, and J. Dobson, "Applications of magnetic nanoparticles in biomedicine," Journal of Physics D: Applied Physics, Vol. 36, R167-R181, 2003.
doi:10.1088/0022-3727/36/13/201

16. Huang, H., F. H. Xue, B. Lu, F. Wang, X. L. Dong, and W. J. Park, "Enhanced polarization in tadpole-shaped (Ni, Al)/Aln nanoparticles and microwave absorption at high frequencies," Progress In Electromagnetics Research B, Vol. 34, 31-46, 2011.

17. Hergt, R. and W. Andrä, "Magnetic hyperthermia and thermoablation," Magnetism in Medicine, 2nd Edition, W. Andrä and H. Nowak, editor, Wiley-VCH, Berlin,2007.

18. Lai, J. C. Y., C. B. Soh, E. Gunawan, and K. S. Low, "Homogeneous and hetero-geneous breast phantoms for ultra-wideband microwave imaging applications," Progress In Electromagnetics Research, Vol. 100, 397-415, 2010.
doi:10.2528/PIER09121103

19. Sabaté, R, R. Barnadas-Rodrguez, J. Callejas-Fernández,R. Hidalgo-Ālvarez, and J. Estelrich, "Preparation and characterization of extruded magnetoliposomes," International Journal of Pharmaceutics, Vol. 347, 156-162, 2008.
doi:10.1016/j.ijpharm.2007.06.047

20. Cepeda, M. F. J., A. Vera. and L. Leija, "Coaxial antenna for microwave coagulation therapy in ex vivo swine breast tissue," 7th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2010), 8-10, Tuxtla Gutiérrez,Chiapas, México, Sept.2010.

21. Trujillo-Romero, C. J., S. García-Jimeno, A. Vera, L. Leija, and and J. Estelrich, "Using nanoparticles for enhancing the focusing heating effect of an external waveguide applicator for oncology hyperthermia: Evaluation in muscle and tumor phantoms," Progress In Electromagnetics Research, Vol. 121, 343-363, 2011.
doi:10.2528/PIER11092911

22. Lazebnik, F. M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002

23. Guy, A. W., "Analysis of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models," IEEE Transactions in Microwave Theory and Techniques, Vol. 19, 205-214, 1971.
doi:10.1109/TMTT.1968.1127484

24. Leslie-Peleckie, D. L. and R. D. Rieke, "Magnetic properties of nanostructured materials," Chemistry of Materials, Vol. 8, 1770-1783, 1996.
doi:10.1021/cm960077f

25. Iero, D., T. Isernia, A. F. Morabito, I. Catapano, and L. Crocco, "Optimal constrained field focusing for hyperthermia cancer therapy: A feasibility assessment on realistic phantoms," Progress In Electromagnetics Research, Vol. 102, 125-141, 2010.
doi:10.2528/PIER10011207

26. Keblinski, P., S. R. Phillpot, S. U. S. Choi, and J. A. Eastman, "Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)," International Journal of Heat and Mass Transfer, Vol. 45, 855-863, 2002.
doi:10.1016/S0017-9310(01)00175-2

27. Gemio, J., J. Parrón, and J. Soler, "Human body effects on implantable antennas for ISM bands applications: Models comparison and propagation losses study," Progress In Electromagnetics Research, Vol. 110, 437-452, 2010.
doi:10.2528/PIER10102604