Vol. 118
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-07-05
Impedance-Mismatched Hyperlens with Increasing Layer Thicknesses
By
Progress In Electromagnetics Research, Vol. 118, 273-286, 2011
Abstract
Structure with non-negative effective permittivities in the radial and tangential directions can also perform far-field imaging beyond the diffraction limit since the dispersion curves can be long and flat enough and utilized to transfer the subwavelength information. Thus we propose an impedance-mismatched hyperlens with such a dispersion curve and increasing thicknesses (from the innermost layer to the outermost) to reduce reflection losses due to the impedance difference between the nearby layer pairs. Compared with the hyperlens with same thickness for each period, the resolution ability of the hyperlens with varying thicknesses can be improved dramatically, while the image intensity is weaker. Furthermore, the influence of the layer number on the imaging is also analyzed to improve the performance of the system and an improved hyperlens with repeated thickness setting is also utilized to increase the intensity of the magnified image.
Citation
Xuan Li, Yuqian Ye, and Yi Jin, "Impedance-Mismatched Hyperlens with Increasing Layer Thicknesses," Progress In Electromagnetics Research, Vol. 118, 273-286, 2011.
doi:10.2528/PIER11042005
References

1. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

2. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534-537, 2005.
doi:10.1126/science.1108759

3. Ramakrishna, S. A., J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Optics, Vol. 50, 1419-1430, 2003.

4. Belov, P. A. and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime ," Phys. Rev. B, Vol. 73, 113110, 2006.
doi:10.1103/PhysRevB.73.113110

5. Jin, Y., "Improving subwavelength resolution of multilayered structures containing negative-permittivity layers by flatting the transmission curves," Progress In Electromagnetics Research, Vol. 105, 347-364, 2010.
doi:10.2528/PIER10051309

6. Cao, P., X. Zhang, L. Cheng, and Q. Meng, "Far field imaging research based on multilayer positive- and negative-refractive-index media under off-axis illumination," Progress In Electromagnetics Research, Vol. 98, 283-298, 2009.
doi:10.2528/PIER09092801

7. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 8247-8256, 2006.
doi:10.1364/OE.14.008247

8. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.
doi:10.1126/science.1137368

9. De Ceglia, D., M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, "Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges," Phys. Rev. A, Vol. 77, 033848, 2008.
doi:10.1103/PhysRevA.77.033848

10. Li, X., S. L. He, and Y. Jin, "Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies," Phys. Rev. B, Vol. 75, 045103, 2007.
doi:10.1103/PhysRevB.75.045103

11. Luo, C., S. G. Johnson, and J. D. Joannopoulos, "All-angle negative refraction without negative effective index," Phys. Rev. B, Vol. 65, 201104(R), 2002.

12. Pustai, D. M., S. Shi, C. Chen, A. Sharkawy, and D. W. Prather, "Analysis of splitters for self-collimated beams in planar photonic crystals," Opt. Express, Vol. 12, 1823-1831, 2004.
doi:10.1364/OPEX.12.001823

13. Augustin, M., R. Iliew, C. Etrich, D. Schelle, H.-J. Fuchs, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, "Self-guiding of infrared and visible light in photonic crystal slabs," Appl. Phys. B, Vol. 81, 313, 2005.
doi:10.1007/s00340-005-1839-9

14. Chew, W. C., Waves and Fields in Inhomogeneous Media, 161-182, Wiley-IEEE Press, 1999.

15. Ahmed, S. and Q. A. Naqvi, "Directive EM radiation of a line source in the presence of a coated PEMC circular cylinder," Progress In Electromagnetics Research, Vol. 92, 91-102, 2009.
doi:10.2528/PIER09030503

16. Kildishev, A. V. and E. E. Narimanov, "Impedance-matched hyperlens," Opt. Lett., Vol. 32, 3432-3434, 2007.
doi:10.1364/OL.32.003432

17. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Semiclassical theory of the hyperlens," J. Opt. Soc. Am. A, Vol. 24, 10, 2007.
doi:10.1364/JOSAA.24.000A52

18. Kildishev, A. V., U. K. Chettiar, Z. Jacob, V. M. Shalaev, and E. Narimanov, "Materializing a binary hyperlens design," Appl. Phys. Lett., Vol. 94, 071102, 2009.
doi:10.1063/1.3081403

19. Shvets, G. and Y. Urzhumov, "Polariton-enhanced near field lithography and imaging with infrared light," Mater. Res. Soc. Symp. Proc., Vol. 820, R1.2.1, 2004.
doi:10.1557/PROC-820-R1.2

20. Korobkin, D., Y. Urzhumov, and G. Shvets, "Enhanced near-field resolution in midinfrared using metamaterials," J. Opt. Soc. Am. B, Vol. 23, 468-478, 2005.
doi:10.1364/JOSAB.23.000468

21. Li, X., F. Zhuang, and C. V. KÄohnenkamp, "Optimized effective permittivity to improve imaging resolution of multilayered structures in infrared," J. Opt. Soc. Am. A, Vol. 26, 365-370, 2009.
doi:10.1364/JOSAA.26.000365

22. Li, X. and Y. Jin, "Appropriate interface termination to improve imaging resolution of multilayered structures in the infrared and optical canalization regime," J. Opt. Soc. Am. A, Vol. 24, 1861-1864, 2008.

23. Weber, M. J., Handbook of Optical Materials, CRC Press, New York, 2003.

24. Xie, H., F. Kong, and K. Li, "The electric field enhancement and resonance in optical antenna composed of Au nanoparicles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 535-548, 2009.
doi:10.1163/156939309787612419

25. Pendry, J. B. and S. A. Ramakrishna, "Near field lenses in two dimensions," J. Phys., Condensed Matter, Vol. 14, 1-17, 2002.

26. Pendry, J. B. and S. A. Ramakrishna, "Refining the perfect lens," Physica B, Vol. 338, 329-332, 2003.
doi:10.1016/j.physb.2003.08.014

27. Gao, D. and L. Gao, "Tunable lateral shift through nonlinear composites of nonspherical particles," Progress In Electromagnetics Research, Vol. 99, 273-287, 2009.
doi:10.2528/PIER09102404

28. Li, X. and F. Zhuang, "The multilayered structures with high subwavelength resolution based on the metal-dielectric composites," J. Opt. Soc. Am. A, Vol. 26, 2521-2525, 2009.
doi:10.1364/JOSAA.26.002521

29. Wu, C. J., J. J. Liao, and T. W. Chang, "Tunable multilayer Fabry-Perot resonator using electro-optical defect layer," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 531-542, 2010.