Vol. 113
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-02-02
Photonic Crystals & Metamaterial Filters Based on 2D Arrays of Silicon Nanopillars
By
Progress In Electromagnetics Research, Vol. 113, 179-194, 2011
Abstract
Highly dense two-dimensional periodic arrays of nano-scaled silicon pillars present interesting photonic band gaps and the capacity to act as photonic crystals which can mould, manipulate and guide light. We demonstrate finite element modelling of silicon pillars based photonic crystals and their effective use in applications like waveguides, optical power dividers, multiplexers and switches. The optical wave propagation through these structures was thoroughly simulated and analysed, confirming their high efficiency. The band gaps studied through the plane wave expansion method are also presented. Later the fabrication of highly periodic two-dimensional arrays of silicon pillars through the process of etching is also explained. The arrays with pillar radius of 50 nm and lattice constant of 400 nm were successfully utilised as photonic crystal waveguides and their measured results are reported. Moreover, the silicon nanopillars sputtered with noble metals can also display artificial optical properties and act as metamaterials due to the mutual plasmonic coupling effects. We report the theoretical results for the silicon nanopillars based metamaterial high-pass filter.
Citation
Haider Butt, Qing Dai, Timothy D. Wilkinson, and Gehan A. J. Amaratunga, "Photonic Crystals & Metamaterial Filters Based on 2D Arrays of Silicon Nanopillars," Progress In Electromagnetics Research, Vol. 113, 179-194, 2011.
doi:10.2528/PIER10122501
References

1. Joannopoulos, J. D., S. G. Johnson, R. D. Meade, and J. N. Winn, "Photonic Crystals: Molding the Flow of Light," Princeton University Press, 2008.

2. Poborchii, V. V., T. Tada, and T. Kanayama, "Photonic-band-gap properties of twodimensional lattices of Si nanopillars," Journal of Applied Physics, Vol. 91, 3299-3305, 2002.
doi:10.1063/1.1446659

3. De Dood, M. J. A., E. Snoeks, A. Moroz, and A. Polman, "Design and optimization of 2D photonic crystal waveguides based on silicon," Optical and Quantum Electronics, Vol. 34, 145-159, 2002.
doi:10.1023/A:1013352814225

4. Zijlstra, T., E. van der Drift, M. J. A. de Dood, E. Snoeks, and A. Polman, "Fabrication of two-dimensional photonic crystal waveguides for 1.5 μm in silicon by deep anisotropic dry etching ," 43rd International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication, 2734-2739, Marco Island, Florida, USA, 1999.

5. Sharkawy, A., S. Shi, D. Prather, and R. Soref, "Electro-optical switching using coupled photonic crystal waveguides," Opt. Express, Vol. 10, 1048-1059, 2002.

6. Ao, X., L. Liu, L.Wosinski, and S. He, "Polarization beam splitter based on a twodimensional photonic crystal of pillar type," Applied Physics Letters, Vol. 89, 171115-3, 2006.
doi:10.1063/1.2360201

7. Sharkawy, A., S. Shi, and D. W. Prather, "Multichannel wavelength division multiplexing with photonic crystals," Appl. Opt., Vol. 40, 2247-2252, 2001.
doi:10.1364/AO.40.002247

8. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, 4773, 1996.
doi:10.1103/PhysRevLett.76.4773

9. Wu, D., N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, "Terahertz plasmonic high pass filter," Applied Physics Letters, Vol. 83, 201-203, 2003.
doi:10.1063/1.1591083

10. Gay-Balmaz, P., C. Maccio, and O. J. F. Martin, "Microwire arrays with plasmonic response at microwave frequencies," Applied Physics Letters, Vol. 81, 2896-2898, 2002.
doi:10.1063/1.1513663

11. COMSOL COMSOL Multiphysics User's Guide & COM-SOL Multiphysics Modeling Guide, 3.3a Ed., 2007, http://www.comsol.com.

12. Lourtioz, J. M. and D. Pagnoux, Photonic Crystals: Towards Nanoscale Photonic Devices, Springer, Berlin, 2008.

13. Djavid, M., A. Ghaffari, F. Monifi, and M. S. Abrishamian, "Photonic crystal power dividers using L-shaped bend based on ring resonators ," J. Opt. Soc. Am. B, Vol. 25, 1231-1235, 2008.
doi:10.1364/JOSAB.25.001231

14. Butt, H., Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, "Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes ," Applied Physics Letters, Vol. 97, 163102-3, 2010.
doi:10.1063/1.3491840