Vol. 113
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-02-03
Very Compact Full Differential Bandpass Filter with Transformer Integrated Using Integrated Passive Device Technology
By
Progress In Electromagnetics Research, Vol. 113, 251-267, 2011
Abstract
In this study, a very compact, second-order, full differential bandpass filter is presented. To achieve compact circuit area and system-in-package (SiP) applications, the transformer structure is integrated using integrated passive device (IPD) technology on a glass substrate. The coupled resonator synthesis method is used to achieve the bandpass filter design and suitably adjust the tapped feed-lines to obtain good impedance match at all ports. The area (1.27 mm×1.27 mm) of the bandpass filter is effectively reduced, and the performance, as measured by insertion loss (2.5 dB) and CMRR (>30 dB), is still acceptable with such a compact area. Most importantly, this full differential bandpass filter is also suitable for SiP applications, as other studies implemented using glass IPD technology have demonstrated.
Citation
Sung-Mao Wu, Chun-Ting Kuo, and Chien-Hsun Chen, "Very Compact Full Differential Bandpass Filter with Transformer Integrated Using Integrated Passive Device Technology," Progress In Electromagnetics Research, Vol. 113, 251-267, 2011.
doi:10.2528/PIER10121701
References

1. Kung, C.-Y., Y.-C. Chen, S.-M. Wu, C.-F. Yang, and J.-S. Sun, "A novel compact 2.4/5.2 GHz dual wideband bandpass filter with deep transmission zero," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 617-628, 2011.
doi:10.1163/156939311794827168

2. Razalli, M. S., A. Ismail, M. A. Mahdi, and M. N. Bin Hamidon, "Novel compact microstrip ultra-wideband filter utilizing short-circuited stubs with less vias," Progress In Electromagnetics Research, Vol. 88, 91-104, 2008.
doi:10.2528/PIER08102303

3. Yang, R.-Y., C.-M. Hung, C.-Y. Hung, and C.-C. Lin, "Design of a high band isolation diplexer for GPS and WLAN system using modified stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 107, 101-114, 2010.
doi:10.2528/PIER10060913

4. Yang, R.-Y., C.-M. Hung, C.-Y. Hung, and C.-C. Lin, "A high performance bandpass filter with a wide and deep stopband by using square stepped impedance resonators," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1673-1683, 2010.
doi:10.1163/156939310792149722

5. Wu, H.-W. and R.-Y. Yang, "Design of a triple-passband microstrip bandpass filter with compact size," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2333-2341, 2010.
doi:10.1163/156939310793675736

6. Chen, J., Z.-B.Weng, Y.-C. Jiao, and F.-S. Zhang, "Lowpass filter design of hilbert curve ring defected ground structure," Progress In Electromagnetics Research, Vol. 70, 269-280, 2007.
doi:10.2528/PIER07012603

7. NaghshvarianJahromi, M., "Novel compact meta-material tunable quasi elliptic band-pass filter using microstrip to slotline transition," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2371-2382, 2010.
doi:10.1163/156939310793675808

8. Shen, W., W. Y. Yi, and X.-W. Sun, "Compact microstrip tri-section bandpass filters with mixed couplings," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1807-1816, 2010.

9. Lin, S. C., C. H. Wang, and C. H. Chen, "Novel patch-via-spiral resonators for the development of miniaturized bandpass filters with transmission zeros," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 137-146, 2007.
doi:10.1109/TMTT.2006.888579

10. Chen, C. F., T. Y. Huang, and R. B.Wu, "Novel compact net-type resonators and their applications to microstrip bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 755-762, 2006.
doi:10.1109/TMTT.2005.862626

11. Lim, T. B. and L. Zhu, "Differential-mode wideband bandpass filter with three transmission zeros under common-mode operation," Asia Pacific Microwave Conference, APMC 2009, 159-162, 2009.
doi:10.1109/APMC.2009.5385398

12. Lim, T. B. and L. Zhu, "A differential-mode wideband bandpass filter on microstrip line for UWB application," IEEE Microwave and Wireless Components Letters, Vol. 19, 632-634, 2009.

13. Lim, T. B. and L. Zhu, "Differential-mode ultra-wideband bandpass filter on microstrip line," Electronics Letters, Vol. 45, 1124-1125, 2009.
doi:10.1049/el.2009.1416

14. Wu, C. H., C. H.Wang, and C. H. Chen, "Novel Balanced coupled-line bandpass filters with common-mode noise suppression," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 287-295, 2007.
doi:10.1109/TMTT.2006.889147

15. Wu, C. H., C. H. Wang, and C. H. Chen, "Stopband-extended balanced bandpass filter using coupled stepped-impedance resonators," IEEE Microwave and Wireless Components Letters, Vol. 17, 507-509, 2007.
doi:10.1109/LMWC.2007.899311

16. Wu, C. H., C. H. Wang, and C. H. Chen, "Balanced coupled-resonator bandpass filters using multisection resonators for common-mode suppression and stopband extension," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 1756-1763, 2007.
doi:10.1109/TMTT.2007.901609

17. Jin, S. and X. Quan, "Balanced bandpass filters using center-loaded half-wavelength resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, 970-977, 2010.
doi:10.1109/TMTT.2010.2042839

18. Shi, J., J. X. Chen, and Q. Xue, "A novel differential bandpass filter based on double-sided parallel-strip line dual-mode resonator," Microwave and Optical Technology Letters, Vol. 50, 1733-1735, 2008.
doi:10.1002/mop.23493

19. Zoschke, K., M. J. Wolf, M. Topper, O. Ehrmann, T. Fritzsch, K. Kaletta, F. J. Schmuckle, and H. Reichl, "Fabrication of application specific integrated passive devices using wafer level packaging technologies," IEEE Transactions on Advanced Packaging, Vol. 30, 359-368, 2007.
doi:10.1109/TADVP.2007.901770

20. Clearfield, H. M., J. L. Young, S. D. Wijeyesekera, and E. A. Logan, "Wafer-level chip scale packaging: Benefits for integrated passive devices," IEEE Transactions on Advanced Packaging, Vol. 23, 247-251, 2000.
doi:10.1109/6040.846642

21. Wang, C.-C., H.-A. Yang, Y. C. Shyu, M.-H. Li, C.-T. Chiu, and C.-P. Hung, "Analysis of high performance RF integrated passive circuits using the glass substrate," IEEE 9th VLSI Packaging Workshop of Japan, VPWJ 2008, 135-138, 2008.
doi:10.1109/VPWJ.2008.4762233

22. Ulrich, R. and L. Schaper, Integrated Passive Component Technology, 1st Edition, Wiley-IEEE Press, 2003.
doi:10.1002/9780471722939

23. Long, J. R., "Monolithic transformers for silicon RF IC design," IEEE Journal of Solid-state Circuits, Vol. 35, 1368-1382, 2000.
doi:10.1109/4.868049

24. Huang, C. H., T.-C. Wei, T.-S. Horng, J.-Y. Li, C.-C. Chen, C.-C. Wang, C.-T. Chiu, and C.-P. Hung, "Design and modeling of planar transformer-based silicon integrated passive devices for wireless applications," IEEE Radio Frequency Integrated Circuits Symposium, RFIC 2009, 167-170, 2009.
doi:10.1109/RFIC.2009.5135514

25. Chen, C.-H., C.-H. Huang, T.-S. Horng, S.-M. Wu, C.-T. Chiu, C.-P. Hung, J.-Y. Li, and C.-C. Chen, "Very compact transformer-coupled balun-integrated bandpass filter using integrated passive device technology on glass substrate," 2010 IEEE MTT-S International Microwave Symposium Digest (MTT), 1372-1375, 2010.

26. Hongtak, L., P. Changkun, and H. Songcheol, "A Quasi-four-pair class-E CMOS RF power amplifier with an integrated passive device transformer," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, 752-759, 2009.
doi:10.1109/TMTT.2009.2015122

27. Chen, H.-K., Y.-C. Hsu, T.-Y. Lin. D.-C. Chang. Y.-Z. Juang, and S.-S. Lu, "CMOS wideband LNA design using integrated passive device," IEEE MTT-S International Microwave Symposium Digest, MTT'09, 673-676, 2009.

28. Grima, M. L., S. Barth, S. Bosse, B. Jarry, P. Gamand, P. Meunier, and B. Barelaud, "A differential SiP (LNA-filter-mixer) in silicon technology for the SKA project," European Microwave Conference, 1129-1132, 2007.
doi:10.1109/EUMC.2007.4405397

29. Zampardi, P., "Performance and modeling of Si and SiGe for power amplifiers," 2007 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 13-17, 2007.
doi:10.1109/SMIC.2007.322758

30. Yu, J.-I., J.-M. Yook, J.-C. Park, C.-H. Kim, and Y.-S. Kwon, "Compact front end modules for WLAN applications with integrated passive devices using selectively anodized aluminum substrate," 2010 European Microwave Integrated Circuits Conference (EuMIC), 329-332, 2010.

31. Hong, J.-S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, New York, 2001.
doi:10.1002/0471221619

32. Bockelman, D. E. and W. R. Eisenstadt, "Combined differential and common-mode scattering parameters: Theory and simulation," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, 1530-1539, 1995.
doi:10.1109/22.392911

33. Eisenstadt, W. R., B. Stengel, and B. M. Thompson, Microwave Differential Circuit Design Using Mixed-mode S-parameters, Artech House, Boston, 2006.