Vol. 112
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-01-12
Transient Response Characterization of the High-Speed Interconnection Rlcg-Model for the Signal Integrity Analysis
By
Progress In Electromagnetics Research, Vol. 112, 183-197, 2011
Abstract
This paper is devoted on the characterization method of RF/digital PCB interconnections for the prediction of the high-speed signal transient responses. The introduced method is based on the use of the interconnection line RLCG-model. Theoretical formulae enabling the extraction of the electrical per-unit length parameters R, L, C and G in function of the interconnection line physical characteristics (width, length, metal conductivity, dielectric permittivity ...) are established. Then, by considering the second order approximation of the interconnection RLCG-model transfer matrix, the calculation process of the transient responses from the interconnection system transfer function is originally established. To demonstrate the relevance of the proposed model, microwave-digital interconnection structure comprised of millimetre microstrip line driven and loaded by logic gates which are respectively modelled by their input and output impedances was considered. Then, comparisons between the SPICE-computation results and those obtained from the proposed analytical model implemented in Matlab were made. As results, by considering a periodical square microwave-digital excitation signal with 2 Gbits/s rate, transient responses which are very well-correlated to the SPICE-results and showing the degradation of the tested signal fidelity are observed. The numerical computations confirm that the proposed modelling method enables also to evaluate accurately the transient signal parameters as the rise-/fall-times and the 50% propagation delay in very less computation time. For this reason, this analytical-numerical modelling method is potentially interesting for the analysis of the signal integrity which propagates in the high-speed complex interconnection systems as the clock tree distribution networks. In the continuation of this work, we would like to apply the proposed modelling process for the enhancement of signal quality degraded by the RF/digital circuit board interconnection where the signal delays and losses became considerably critical.
Citation
Thomas Eudes, Blaise Ravelo, and Anne Louis, "Transient Response Characterization of the High-Speed Interconnection Rlcg-Model for the Signal Integrity Analysis," Progress In Electromagnetics Research, Vol. 112, 183-197, 2011.
doi:10.2528/PIER10111805
References

1. International Technology Roadmap for Seminconductors Update Overview, http://www.itrs.net/Links/2009ITRS/Home2009.htm.

2. Deutsch, A., "High-speed signal propagation on lossy transmission lines," IBM J. Res. Develop., Vol. 34, No. 4, 601-615, Jul. 1990.
doi:10.1147/rd.344.0601

3. Celik, M., L. Pileggi, and A. Odabasioglu, , IC Interconnect Analysis, 1-4020-7075-6, Kluwer Academic Publisher, Dordrecht, 2002.

4. Ligocka-Wardzinska, A. and W. Bandurski, "Sensitivity of output response to geometrical dimensions in VLSI interconnects," Proc. of 13th IEEE Workshop SPI, 1-4, Strasbourg, France, May 2009.

5. Chiu, C.-N. and I.-T. Chiang, "A fast approach for simulating long-time response of high-speed dispersive and lossy interconnects terminated with nonlinear loads," Progress In Electromagnetics Research, Vol. 91, 153-171, 2009.
doi:10.2528/PIER09021502

6. Ghoneima, M., Y. Ismail, M. M. Khellah, J. Tschanz, and V. De, "Serial-link bus: A low-power on-chip bus architecture," IEEE Trans. CAS I, Vol. 56, No. 9, 2020-2032, Sep. 2009.
doi:10.1109/TCSI.2008.2010155

7. Hwang, M.-E., S.-O. Jung, and K. Roy, "Slope interconnect effort: Gate-interconnect interdependent delay modeling for early CMOS circuit simulation," IEEE Trans. CAS I, Vol. 56, No. 7, 1428-1441, Jul. 2009.

8. Elmore, W. C., "The transient response of damped linear networks," J. Appl. Phys., Vol. 19, 55-63, Jan. 1948.
doi:10.1063/1.1697872

9. Wyatt, J. L., Circuit Analysis, Simulation and Design, Elsiever Science, North-Holland, The Netherlands, 1978.

10. Kahng, A. B. and S. Muddu, "An analytical delay model of RLC interconnects," IEEE Trans. Computed-Aided Design, Vol. 16, 1507-1514, Dec. 1997.
doi:10.1109/43.664231

11. Ismail, Y. I. and E. G. Friedman, "Effects of inductance on the propagation, delay and repeater insertion in VLSI circuits," IEEE Trans. VLSI Sys., Vol. 8, No. 2, 195-206, Apr. 2000.
doi:10.1109/92.831439

12. Ismail, Y. I., E. G. Friedman, and J. L. Neves, "Equivalent Elmore delay for RLC trees," IEEE Trans. CAD, Vol. 19, No. 1, 83-97, Jan. 2000.

13. Ligocka, A. and W. Bandurski, "Effect of inductance on interconnect propagation delay in VLSI circuits," Proc. of 8th IEEE Workshop SPI, 121-124, May 9--12, 2004.

14. Basl, P. A. W., M. H. Bakr, and N. K. Nikolova, "Efficient transmission line modeling sensitivity analysis exploiting rubber cells," Progress In Electromagnetics Research B, Vol. 11, 223-243, 2009.
doi:10.2528/PIERB08111502

15. Xie, H., J. Wang, R. Fan, and Y. Liu, "Study of loss effect of transmission lines and validity of a Spice model in electromagnetic topology," Progress In Electromagnetics Research, Vol. 90, 89-103, 2009.
doi:10.2528/PIER08121605

16. Hammerstad, E. and O. Jensen, "Accurate models for microstrip computer aided design," IEEE Trans. MTT, 407-409, 1980.

17. Hammerstad, E. O., "Equations for microstrip circuit design," Proc. of 5th EuMC, 268-272, Sep. 1975.

18. Marks, R. B. and D. F. Williams, "Interconnection transmission line parameter characterization," Proc. of 40th ARTG Conf. Dig., 88-95, Orlando, FL, USA, Dec. 1992.

19. Marks, R. B. and D. F. Williams, "Characteristic impedance determination using propagation constant measurement," IEEE Mic. Guided Wave Lett., Vol. 6, 141-143, Jun. 1991.
doi:10.1109/75.91092

20. Eisenstadt, W. R. and Y. Eo, "S-parameter-based IC interconnect transmission line characterization," IEEE Trans. Comp. Hybrids Manuf. Technol., Vol. 15, 483-490, Aug. 1992.
doi:10.1109/33.159877

21. Deutsch, A., R. S. Krabbenhoft, K. L. Melde, C. W. Surovicm, G. A. Katopis, G. V. Kopcsay, Z. Zhou, Z. Chen, Y. H. Kwark, T.-M. Winkel, X. Gu, and T. E. Standaert, "Application of the short-pulse propagation technique for broadband characterization of PCB and other interconnect technologies," IEEE Trans. EMC, Vol. 52, 266-287, Feb. 2010.

22. Cong, J., L. He, C.-K. Koh, and P. Madden, "Performance optimization of VLSI interconnect," Integration VLSI J., Vol. 21, 1-94.
doi:10.1016/S0167-9260(96)00008-9

23. Yun, B. and S. S. Wong, "Optimization of driver preemphasis for on-chip interconnects," IEEE Trans. CAS I, Vol. 56, No. 9, 2033-2041.

24. Rosenfeld, J. and E. G. Friedman, "Design methodology for global resonant H-tree clock distribution networks," IEEE Trans. VLSI Systems, Vol. 15, No. 2, 135-148, Feb. 2007.
doi:10.1109/TVLSI.2007.893576

25. Awwad, F. R., M. Nekili, V. Ramachandran, and M. Sawan, "On modeling of parallel repeater-insertion methodologies for SoC interconnects," IEEE Trans. CAS I, Vol. 55, No. 1, 322-335, Feb. 2008.
doi:10.1109/TCSI.2007.910538

26. Ravelo, B., A. Perennec, and M. Le Roy, "Experimental validation of the RC-interconnect effect equalization with negative group delay active circuit in planar hybrid technology," Proc. of 13th IEEE Workshop SPI, Strasbourg, France, May 2009.

27. Ravelo, B., A. Perennec, and M. Le Roy, "New technique of inter-chip interconnect effects equalization with negative group delay active circuits," VLSI, Vol. 20, 409-434, Z. F. Wang (ed.), INTECH, Feb. 2010.

28. Zhang, J. and T. Y. Hsiang, "Extraction of subterahertz transmission-line parameters of coplanar waveguides," PIERS Online, Vol. 3, No. 7, 1102-1106, 2007.
doi:10.2529/PIERS060912144405

29. Kashyap, C. V., C. J. Alpert, F. Liu, and A. Devgan, "Closed-form expressions for extending step delay and slew metrics to ramp inputs for RC trees," IEEE Trans. CADICAS I, Vol. 23, No. 4, 509-516, Apr. 2004.

30. Kirschning, M. and R. H. Jansen, "Accurate model for effective dielectric constant with validity up to millimeter-wave frequencies," Electronics Letters, Vol. 18, 272-273, 1982.
doi:10.1049/el:19820186

31. Pozar, D. M., Microwave Engineering, 2nd Ed., 9-21, John Wiley, 154--166, 1998.

32. Pucel, R. A., D. J. Massé, and C. Hartwing, "Losses in microstip," IEEE Trans. MTT, Vol. 16, No. 6, 342-350, 1968.
doi:10.1109/TMTT.1968.1126691

33. Chen, C., J. Lillis, S. Lin, and N. Chang, Interconnect Analysis and Synthesis, Wiley, New York, 2000.

34. Zhang, G. H., M. Y. Xia, and X. M. Jiang, "Transient analysis of wire structures using time domain integral equation method with exact matrix elements," Progress In Electromagnetics Research, Vol. 92, 281-298, 2009.
doi:10.2528/PIER09032003

35. Torrungrueng, D. and S. Lamultree, "Equivalent graphical solutions of terminated conjugately characteristic-impedance transmission lines with non-negative and corresponding negative characteristic resistances," Progress In Electromagnetics Researc, Vol. 92, 137-151, 2009.
doi:10.2528/PIER09031001

36. Roy, A., S. Ghosh, and A. Chakrabarty, "Simple crosstalk model of three wires to predict near-end and far-end crosstalk in EMI/EMC environment to facilitate EMI/EMC modeling," Progress In Electromagnetics Research B, Vol. 8, 43-58, 2008.
doi:10.2528/PIERB08050503