Vol. 111
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-12-07
Low Loss Metal Diplexer and Combiner Based on a Photonic Band Gap Channel-DROP Filter at 109 GHz
By
Progress In Electromagnetics Research, Vol. 111, 197-212, 2011
Abstract
In this paper we present the design, fabrication and measurements for a Wband metal Photonic Band Gap (PBG) Channel-Drop Filter (CDF) diplexer, which can also be employed as a combiner to combine signals of different frequencies into a single waveguide. A PBG CDF is a device that allows channeling of a selected frequency from a continuous spectrum into a separate waveguide through resonant defects in a PBG structure. A PBG CDF transmits straight through all the frequencies except for the resonant frequency, and thus it represents a diplexer. Reversing the wave flow directions causes it to combine signals of different frequencies from two different waveguides into a single channel, representing a combiner. The device is compact and configurable and can be employed for mm-wave spectrometry with applications in communications, radio astronomy, and radar receivers for remote sensing and nonproliferation. High ohmic losses in metals constitute the main challenge in realization of a metal CDF at W-band. To mitigate the problem of ohmic losses, the filter was designed to operate at coupled dipole resonant modes instead of coupled fundamental monopole modes. The experimental samples were fabricated in two different ways: by conventional machining and by electroforming. The comparative results of the samples' testing are presented in the paper. Frequency selectivity of 30 dB with a 0.3 GHz linewidth at 108.5 GHz was demonstrated. In addition, we suggest an experimental method to check the frequencies of separate resonant cavities of fabricated samples which do not properly operate and a possible way to adjust the geometry of the cavities for the frequencies to meet the required specifications.
Citation
Dmitry Yuryevich Shchegolkov, Cynthia Eileen Heath, and Evgenya Ivanovna Simakov, "Low Loss Metal Diplexer and Combiner Based on a Photonic Band Gap Channel-DROP Filter at 109 GHz ," Progress In Electromagnetics Research, Vol. 111, 197-212, 2011.
doi:10.2528/PIER10110808
References

1. Christopher, P., "Mid millimeter waves for broadband satellite communication 72-100 GHz," Proc. of Wireless Telecommunication Symposium, 2008, WTS 2008, 177-186, 2008.
doi:10.1109/WTS.2008.4547563

2. Vu, T. M., G. Prigent, and R. Plana, "Membrane technology for band-pass filter in W-band," Microwave and Optical Technology Letters, Vol. 52, No. 6, 1393-1397, 2010.
doi:10.1002/mop.25216

3. Dainelli, V., G. Giannantoni, and M. Muscinelli, "W band multi application payload for space and multiplanetary missions," Satellite Communications and Navigation Systems, M. Ruggieri (ed.), 431-446, Springer, 2008.

4. International Telecommunication Union, www.itu.int.

5. Yablonovitch, E., T. J. Gmitter, and K. M. Leung, "Photonic band structure: The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett., Vol. 67, No. 17, 2295-2298, 1991.
doi:10.1103/PhysRevLett.67.2295

6. Fan, S., P. R. Villeneuve, J. Joannopoulos, and H. Haus, "Channel drop filters in photonic crystals," Optics Express, Vol. 3, No. 1, 4-11, 1998.
doi:10.1364/OE.3.000004

7. Lin, S. Y., V. M. Hietala, L. Wang, and E. D. Johnes, "Highly dispersive photonic band-gap prism," Optics Letters, Vol. 21, 1771-1773, 1996.
doi:10.1364/OL.21.001771

8. Maystre, D., "Photonic crystal diffraction gratings," Optics Express, Vol. 8, No. 3, 209-216, 2001.
doi:10.1364/OE.8.000209

9. Kasparek, W., M. Petelin, V. Erckmann, D. Shchegolkov, A. Bruschi, S. Cirant, A. Litvak, M. Thumm, B. Plaum, M. Grünert, and M. Malthaner, "Fast switching and power combination of high-power electron cyclotron wave beams: Principles, numerical results and experiments," Fusion Science and Technology, Vol. 52, No. 2, 281-290, 2007.

10. Kasparek, W., M. I. Petelin, D. Y. Shchegolkov, V. Erckmann, B. Plaum, A. Bruschi, ECRH groups at IPP Greifswald, FZK Karlsruhe, and IPF Stuttgart, "A fast switch, combiner and narrow-band filter for high-power millimetre wave beams," Nuclear Fusion, Vol. 48, 054010, 2008.
doi:10.1088/0029-5515/48/5/054010

11. Erckmann, V., W. Kasparek, Y. Koshurinov, L. Lubyako, M. I. Petelin, D. Y. Shchegolkov, F. Hollmann, G. Michel, F. Noke, F. Purps, ECRH Groups at IPP Greifswald, IPF Stuttgart, IAP Nizhny Novgorod, FZK Karlsruhe, and IFP Milano, "Power combination of two 140 GHz gyrotrons and fast switching of the combined beam," Fusion Science and Technology, Vol. 1, No. 1, 23-30, 2009.

12. Djavid, M. and M. S. Abrishamian, "Photonic crystal channel drop filters with mirror cavities," Optical and Quantum Electronics, Vol. 39, No. 14, 1183-1190, 2007.
doi:10.1007/s11082-007-9168-3

13. Zhang, W., J. Liu, and W. Zhao, "Design of a compact photonic-crystal-based polarization channel drop filter," IEEE Photonics Tech. Lett., Vol. 21, No. 11, 739-741, 2009.
doi:10.1109/LPT.2009.2017503

14. Stieler, D., A. Barsic, R. Biswas, G. Tuttle, and K.-M. Ho, "A planar four-port channel drop filter in the three-dimensional woodpile photonic crystal," Optics Express, Vol. 17, No. 8, 6128-6133, 2009.
doi:10.1364/OE.17.006128

15. Takano, H., Y. Akahane, T. Asano, and S. Noda, "In-plane-type channel drop filter in a two-dimensional photonic crystal slab," Appl. Phys. Lett., Vol. 84, 2226, 2004.
doi:10.1063/1.1689742

16. Takano, H., B.-S. Song, T. Asano, and S. Noda, "Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal," Appl. Phys. Lett., Vol. 86, 241101, 2005.
doi:10.1063/1.1941458

17. Wang, K. and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature, Vol. 432, 376-379, 2004.
doi:10.1038/nature03040

18. Lin, C., C. Chen, G. J. Schneider, P. Yao, S. Shi, A. Sharkawy, and D. W. Prather, "Wavelength scale terahertz two-dimensional photonic crystal waveguides," Optics Express, Vol. 12, 5723-5728, 2004.
doi:10.1364/OPEX.12.005723

19. Chi, C., H. Wang, S. Pai, W. Lai, S. Horng, and R. S. Huang, "Fabrication and characterization of terahertz photonic crystals," Proceedings of SPIE, Vol. 4643, 19-30, 2002.

20. Kurt, H. and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," App. Phys. Lett., Vol. 87, 041108, 2005.
doi:10.1063/1.1999861

21. Smirnova, E. I., L. M. Earley, C. E. Heath, and D. Y. Shchegolkov, "Design and fabrication of a 100-GHz channel-drop filter," Proc. of the 33rd International Conference on Infrared, Millimeter, and Terahertz Waves, DOI: 10.1109/ICIMW.2008.4665416, 2008.

22. Shchegolkov, D. Y., L. M. Earley, C. E. Heath, and E. I. Smirnova, "Design and testing of photonic band gap channel-drop-filters," Proc. of the 34th International Conference on Infrared, Millimeter, and Terahertz Waves, DOI: 10.1109/ICIMW.2009.5324590, 2009.

23. Simakov, E. I., L. M. Earley, C. E. Heath, D. Y. Shchegolkov, and B. D. Schultz, "First experimental demonstration of a photonic band gap channel-drop filter at 240 GHz," Review of Scientific Instruments, Vol. 81, 104701, 2010.
doi:10.1063/1.3488376

24. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, 1995.

25. Computer Simulation Technology, Microwave Studio www.cst.com.

26. Smirnova, E. I., I. Mastovsky, M. A. Shapiro, R. J. Temkin, L. M. Earley, and R. L. Edwards, "Fabrication and cold test of photonic band gap resonators and accelerator structures," Physical Review Special Topics --- Accelerators and Beams, Vol. 8, No. 9, 091302, 2005.
doi:10.1103/PhysRevSTAB.8.091302