Vol. 103
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-05-07
Pencil Beam Patterns Obtained by Planar Arrays of Parasitic Dipoles Fed by Only One Active Element
By
Progress In Electromagnetics Research, Vol. 103, 419-431, 2010
Abstract
In this paper, an innovative method for obtaining a pencil beam pattern is presented. Planar arrays of parasitic dipoles are used to modify the pattern of an active dipole above a ground plane, in order to obtain a pencil beam of moderate gain and bandwidth. Only one feed point and one active element provides a very simple feeding network that reduces the complexity of the antenna. The correct configuration of the elements of the parasitic arrays allows to obtain the desired pencil beam pattern. Three designs that use parasitic arrays fed by a λ/2-dipole and synthesize pencil beam patterns are shown: 1) an antenna designed at 1.645 GHz and composed by one layer of 49 parasitic elements; 2) an antenna designed at the same frequency but composed by two layers of 49 parasitic elements; 3) an antenna designed at 5 GHz, composed by one layer of 49 parasitic elements, and taking into account the dielectric substrate and teflon screws.
Citation
Marcos Alvarez Folgueiras, Juan Antonio Rodríguez-Gonzalez, and Francisco Ares-Pena, "Pencil Beam Patterns Obtained by Planar Arrays of Parasitic Dipoles Fed by Only One Active Element," Progress In Electromagnetics Research, Vol. 103, 419-431, 2010.
doi:10.2528/PIER10040705
References

1. Mailloux, R. J., Phased Array Antenna Handbook, 2nd Ed., Artech House, Inc., 2005.

2. Hansen, R. C., Phased Array Antennas, John Wiley & Sons, Inc., 1998.

3. Fourikis, N., "Phased Array-based Systems and Applications," John Wiley & Sons, Inc., 1997.

4. Brookner, E., Practical Phased Array Antenna System, Artech House, Inc., 1991.

5. Bhattacharyya, A. K., "Phased Array Antennas: Floquet Analysis, Synthesis, BFNs and Active Array Systems," Wiley-Interscience, 2006.

6. Yuan, H.-W., S.-X. Gong, P.-F. Zhang, and X. Wang, "Wide scanning phased array antenna using printed dipole antennas with parasitic element ," Progress In Electromagnetics Research Letters, Vol. 2, 187-193, 2008.
doi:10.2528/PIERL08011602

7. Chen, X., G. Fu, S. X. Gong, J. Chen, and X. Li, "A novel microstrip array antenna with coplanar parasitic elements for UHF RFID reader," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2491-2502, 2009.

8. Kamarudin, M. R. B. and P. S. Hall, "Switched beam antenna array with parasitic elements," Progress In Electromagnetics Research B, Vol. 13, 187-201, 2009.
doi:10.2528/PIERB09011603

9. Alvarez-Folgueiras, M., J. A. Rodrguez-Gonzalez, and F. Ares-Pena, "Low-sidelobe patterns from small, low-loss uniformly fed linear arrays illuminating parasitic dipoles ," IEEE Trans. Antennas Propagat., Vol. 57, No. 5, 1583-1585, 2009.
doi:10.1109/TAP.2009.2016804

10. Rodriguez, J. A., A. Trastoy, J. C. Bregains, F. Ares, and G. Franceschetti, "Beam reconfiguration of linear arrays using parasitic elements," Electron. Lett., Vol. 42, No. 1, 131-133, 2006.
doi:10.1049/el:20063674

11. Ares-Pena, F. J., G. Franceschetti, and J. A. Rodriguez, "A simple alternative for beam reconfiguration of array antennas," Progress In Electromagnetics Research, Vol. 88, 227-240.

12. Skobelev, S. P., "Performance of Yagi-Uda elements in planar array antennas for limited-scan applications," Microwave Opt. Technol. Lett., Vol. 34, No. 2, 141-145, 2002.
doi:10.1002/mop.10397

13. Jones, E. A. and W. T. Joines, "Design of Yagi-Uda antennas using genetic algorithms," IEEE Trans. Antennas Propagat., Vol. 45, No. 9, 1386-1392, 1997.
doi:10.1109/8.623128

14. Bemani, M. and S. Nikmehr, "A novel wide-band microstrip Yagi-Uda array antenna for WLAN applications," Progress In Electromagnetics Research B, Vol. 16, 389-406, 2009.
doi:10.2528/PIERB09053101

15. Sun, B.-H., S.-G. Zhou, Y.-F. Wei, and Q.-Z. Liu, "Modified two-element Yagi-Uda antenna with tunable beams," Progress In Electromagnetics Research, Vol. 100, 175-187, 2010.
doi:10.2528/PIER09111501

16. Bayderkhani, R. and H. R. Hassani, "Wideband and low sidelobe linear series FED Yagi-like antenna array," Progress In Electromagnetics Research B, Vol. 17, 153-167, 2009.
doi:10.2528/PIERB09072502

17. Mahmoud, K. R., M. El-Adawy, S. M. M. Ibrahem, R. Bansal, K. R. Mahmoud Visiting, and S. H. Zainud-Deen, "Performance of circular yagi-uda arrays for beamforming applications using particle swarm optimization algorithm," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 353-364, 2008.
doi:10.1163/156939308784160866

18. Guerin, N., S. Enoch, G. Tayeb, P. Sabouroux, P. Vicent, and H. Legay, "A metallic Fabry-Perot directive antenna," IEEE Trans. Antennas Propagat., Vol. 54, No. 1, 220-224, 2006.
doi:10.1109/TAP.2005.861578

19. Killen, W. D. and H. J. Delgado, "Printed circuit board-configured dipole array having matched impedance-coupled microstrip feed and parasitic elements for reducing sidelobes ," Patent application US 2001/0050654 A1, Dec. 2001.

20. Zhang, S., S.-X. Gong, and P.-F. Zhang, "A modified PSO for low sidelobe concentric ring arrays synthesis with multiple constraints," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1535-1544, 2009.
doi:10.1163/156939309789476239

21. Poyatos, D., D. Escot, I. Montiel, I. Gonzalez, F. Saez de Adana, and M. F. Catedra, "Evaluation of particle swarm optimization applied to single snapshot direction of arrival estimation," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 16, 2251-2258, 2008.
doi:10.1163/156939308787522528

22. Pathak, N., G. K. Mahanti, S. K. Singh, J. K. Mishra, and A. Chakraborty, "Synthesis of thinned planar circular array antennas using modified particle swarm optimization," Progress In Electromagnetics Research Letters, Vol. 12, 87-97, 2009.
doi:10.2528/PIERL09090606

23. Mangoud, M. A.-A. and H. M. Elragal, "Antenna array pattern synthesis and wide null control using enhanced particle swarm optimization," Progress In Electromagnetics Research B, Vol. 17, 1-14, 2009.
doi:10.2528/PIERB09070205

24. Khodier, M. M. and M. Al-Aqeel, "Linear and circular array optimization: A study using particle swarm intelligence," Progress In Electromagnetics Research B, Vol. 15, 347-373, 2009.
doi:10.2528/PIERB09033101

25., EM Software and Systems, FEKO Suite 5.4, www.feko.info, 2008.