Vol. 103
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-04-28
Radiation Pattern Synthesis for Maximum Mean Effective Gain with Spherical Wave Expansions and Particle Swarm Techniques
By
Progress In Electromagnetics Research, Vol. 103, 355-370, 2010
Abstract
A new Mean Effective Gain (MEG) expression using SphericalWave Expansions (SWE) is presented in order to evaluate the impact of mobile environments on radiating structures. The proposed approach takes into account the pattern polarization and transforms a continuous functional optimization problem into an approximate discrete formulation. It allows to synthesize efficient antenna radiation patterns in terms of the Mean Effective Gain when it is combined with modern heuristic optimization techniques. In addition, antenna performance limits are evaluated by means of certain bounds. These depend on the modal number which is required to describe accurately far fields and depend ultimately on the antenna size. The method estimates the optimum patterns for two different wireless scenarios that are characterized by the statistical probability density functions of incoming waves and particularized in the case of Gaussian statistics. The numerical evaluation has been performed by means of the Particle Swarm Optimization (PSO) technique, which is slightly modified to include a specific constrain and whose parameters have been computed previously by solving a canonical problem. Finally, representative results in outdoor and mixed wireless scenarios are discussed, pointing out some useful consequences in antenna design.
Citation
Pedro Luis Carro Ceballos, J. De Mingo Sanz, and Paloma García Dúcar, "Radiation Pattern Synthesis for Maximum Mean Effective Gain with Spherical Wave Expansions and Particle Swarm Techniques," Progress In Electromagnetics Research, Vol. 103, 355-370, 2010.
doi:10.2528/PIER10031808
References

1. Khaleghi, A., "Diversity techniques with parallel dipole antennas: Radiation pattern analysis," Progress In Electromagnetics Research, Vol. 64, 23-42, 2004.
doi:10.2528/PIER06062401

2. Plicanic, V., K. L. Buon, A. Derneryd, and Z. Ying, "Actual diversity performance of a multiband diversity antenna with hand and head effects," IEEE Trans. Antennas and Propagation, Vol. 57, No. 5, 1547-1556, 2009.
doi:10.1109/TAP.2009.2016707

3. De Mingo, J., P. L. Carro, and P. Garcia-Ducar, "Antenna e®ects in DVB-H mobile rebroadcasters," IEEE Trans. Consumer Electronics, Vol. 55, No. 3, 1155-1161, 2009.
doi:10.1109/TCE.2009.5277970

4. Glazunov, A. A., M. Gustafsson, A. F. Molisch, F. Tufvesson, and G. Kristensson, "Spherical vector wave expansion of gaussian electromagnetic ¯elds for antenna-channel interaction analysis," IEEE Trans. Antennas and Propagation, Vol. 57, No. 7, 2055-2067, 2009.
doi:10.1109/TAP.2009.2016686

5. Taga, T., "Analysis for mean effective gain of mobile antennas in land mobile radio environments ," IEEE Trans. Vehicular Technology, Vol. 39, No. 2, 117-131, 1990.
doi:10.1109/25.54228

6. Harrington, R. F., Time Harmonic Electromagnetic Fields, Wiley-IEEE press, New York, 1961.

7. Kalliola, K., K. Sulonen, H. Laitinen, et al. "Angular power distribution and mean effective gain of mobile antenna in different propagation environments ," IEEE Trans. Vehicular Technology, Vol. 51, No. 5, 823-838, 2002.
doi:10.1109/TVT.2002.800639

8. Knudsen, M. B. and G. F. Pedersen, "Spherical outdoor to indoor power spectrum model at the mobile terminal," IEEE Jnl. on Selected Areas in Communications, Vol. 20, No. 6, 1156-1169, 2002.
doi:10.1109/JSAC.2002.801216

9. Perez, J. R. and J. Basterrechea, "Hybrid particle swarm-based algorithms and their application to linear array sinthesis," Progress In Electromagnetics Research, Vol. 90, 63-74, 2009.

10. Lanza, M., J. R. Perez, and J. Basterrechea, "Synthesis of planar arrays using a modifies particle swarm optimization algorithm by introducing a selection operator and elitism," Progress In Electromagnetics Research, Vol. 93, 145-160, 2009.
doi:10.2528/PIER09041303

11. Hansen, J. E., Spherical Near-Field Antenna Measurements, Peter Peregrinus Ltd., 1988.

12. Koivisto, P. K. and J. C.-E. Sten, "On the influence of incomplete radiation pattern data on the accuracy of a spherical wave expansion," Progress In Electromagnetics Research, Vol. 52, 185-204, 2005.
doi:10.2528/PIER04080902

13. Koivisto, P. K., "Reduction of errors in antenna radiation patterns using optimally truncated spherical wave expansion ," Progress In Electromagnetics Research, Vol. 47, 313-333, 2004.
doi:10.2528/PIER03120301

14. Kennedy, J. and R. C. Eberhart, "Particle swarm optimization," Proc. IEEE Conf. Neural Networks IV, Piscataway, New York, 1995.

15. Pozar, D. M., "Polarization of maximum gain antennas," IEEE Trans. Antennas and Propagation, Vol. 55, No. 7, 2113-2115, 2007.
doi:10.1109/TAP.2007.900276