Vol. 104
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-06-02
TE Mode Propagation through Tapered Core Liquid Crystal Optical Fibers
By
Progress In Electromagnetics Research, Vol. 104, 449-463, 2010
Abstract
An analysis is presented of a three-layer tapered core liquid crystal optical fiber (TLCF) having the outermost clad section made of radially anisotropic liquid crystal. TE mode propagation through TLCF is demonstrated with maximum distribution of power in the liquid crystal section under the situation that the TLCF core and the inner clad regions are constructed of homogeneous and isotropic dielectric materials. Such a propagation feature is attributed to the radial anisotropy of the liquid crystal outer region, and attracts useful applications of TLCFs in evanescent field optical sensing and other coupling devices primarily used in integrated optics.
Citation
Pankaj Choudhury, and Wong Keng Soon, "TE Mode Propagation through Tapered Core Liquid Crystal Optical Fibers," Progress In Electromagnetics Research, Vol. 104, 449-463, 2010.
doi:10.2528/PIER10021104
References

1. Cheng, Q. and T.-J. Cui, "Guided modes and continuous modes in parallel-plate waveguides excited by a line source," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1577-1587, 2007.

2. Mei, Z.-L. and F.-Y. Xu, "A simple, fast and accurate method for calculating cutoff wavelengths for the dominant mode in elliptical waveguide," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 3, 367-374, 2007.
doi:10.1163/156939307779367440

3. Kumar, D., P. K. Choudhury, and O. N. Singh II, "Towards the dispersion relations for dielectric optical fibers with helical windings under slow- and fast-wave considerations --- A comparative analysis," Progress In Electromagnetics Research, Vol. 80, 409-420, 2008.
doi:10.2528/PIER07120302

4. Wang, Z.-Y., X.-M. Cheng, X.-Q. He, S.-L. Fan, and W.-Z. Yan, "Photonic crystal narrow filters with negative refractive index structural defects," Progress In Electromagnetics Research, Vol. 80, 421-430, 2008.
doi:10.2528/PIER07121002

5. Safie, A. H. B. M. and P. K. Choudhury, "On the field patterns of helical clad dielectric optical fibers," Progress In Electromagnetics Research, Vol. 91, 69-84, 2009.
doi:10.2528/PIER09020208

6. Siong, C. C. and P. K. Choudhury, "Propagation characteristics of tapered core helical clad dielectric optical fibers," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 663-674, 2009.
doi:10.1163/156939309788019877

7. Abd-Rahman, F., P. K. Choudhury, D. Kumar, and Z. Yusoff, "An analytical investigation of four-layer dielectric optical fibers with Au nano-coating --- A comparison with three-layer optical fibers," Progress In Electromagnetics Research, Vol. 900, 269-286, 2009.
doi:10.2528/PIER09010706

8. Sjoberg, D., "Determination of propagation constants and material data from waveguide measurements," Progress In Electromagnetics Research B, Vol. 12, 163-182, 2009.
doi:10.2528/PIERB08121304

9. Qi, L.-M. and Z. Yang, "Modified plane wave method analysis of dielectric plasma photonic crystal," Progress In Electromagnetics Research, Vol. 91, 319-322, 2009.
doi:10.2528/PIER09022605

10. Watanabe, K. and K. Yasumoto, "Accuracy improvement of the Fourier series expansion method for floquet-mode analysis of photonic crystal waveguides," Progress In Electromagnetics Research, Vol. 92, 209-222, 2009.
doi:10.2528/PIER09032704

11. Lee, H.-S., "A photon modeling method for the characterization of indoor optical wireless communication," Progress In Electromagnetics Research, Vol. 92, 121-136, 2009.
doi:10.2528/PIER09030506

12. Rahman, M. M. and P. K. Choudhury, "Polarized photon generation for the transport of quantum states: A closed-system simulation approach ," Progress In Electromagnetics Research M, Vol. 8, 249-261, 2009.
doi:10.2528/PIERM09081603

13. Wu, S.-T. and U. Efron, "Optical properties of thin nematic liquid crystal cells," Appl. Phys. Lett., Vol. 48, 624-636, 1986.
doi:10.1063/1.96724

14. Green, M. and S. J. Madden, "Low loss nematic liquid crystal cored fiber waveguides," Appl. Opt., Vol. 28, 5202-5203, 1989.
doi:10.1364/AO.28.005202

15. Veilleux, C., J. Lapierre, and J. Bures, "Liquid-crystal-clad tapered fibers," Opt. Lett., Vol. 11, 733-735, 1986.
doi:10.1364/OL.11.000733

16. Lin, H., P. P. Muhoray, and M. A. Lee, "Liquid crystalline cores for optical fibers," Mol. Cryst. Liq. Cryst., Vol. 204, 189-200, 1991.
doi:10.1080/00268949108046605

17. Sage, I. and D. Chaplin, "Low RI liquid crystals for integrated optics," Electron. Lett., Vol. 23, 1192-1193, 1987.
doi:10.1049/el:19870829

18. Kashyap, R., C. S. Winter, and B. K. Nayar, "Polarization desensitized liquid-crystal overlay optical-fiber modulator," Opt. Lett., Vol. 13, 401-403, 1988.
doi:10.1364/OL.13.000401

19. Ioannidis, Z. K., I. P. Giles, and C. Bowry, "All-fiber optic intensity modulators using liquid crystals," Appl. Opt., Vol. 30, 328-333, 1991.
doi:10.1364/AO.30.000328

20. Yoshino, T., Y. Takahashi, H. Tamura, and N. Ohde, "Some special ¯bers for distributed sensing of uv light, electric field or strain," Proc. SPIE, Vol. 2071, 242-254, 1993.
doi:10.1117/12.165912

21. Goldburt, E. S. and P. S. J. Russell, "Electro-optical response of a liquid-crystalline fiber coupler," Appl. Phys. Lett., Vol. 48, 10-12, 1986.
doi:10.1063/1.96772

22. Chen, S.-H. and T.-J. Chen, "Observation of mode selection in a radially anisotropic cylindrical waveguide with liquid-crystal cladding," Appl. Phys. Lett.,, Vol. 64, 1893-1895, 1994.
doi:10.1063/1.111760

23. Black, R., J. F. Gonthier, S. Lacroix, and J. D. Love, "Tapered ingle-mode fibres and devices: I. Adiabaticity criteria," IEE Proc. J., Vol. 138, 343-354, 1991.

24. Ono, K. and H. Osawa, "Excitation characteristics of fundamental mode in tapered slab waveguides with nonlinear cladding," Electron. Lett., Vol. 27, 664-666, 1991.
doi:10.1049/el:19910416

25. Lim, M. H., S. C. Yeow, P. K. Choudhury, and D. Kumar, "Towards the dispersion characteristics of tapered core dielectric optical fibers," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1597-1609, 2006.
doi:10.1163/156939306779292417

26. Yeow, S. C., M. H. Lim, and P. K. Choudhury, "A rigorous analysis of the distribution of power in plastic clad linear tapered fibers," Optik, Vol. 117, 405-410, 2006.

27. Choudhury, P. K. and D. Kumar, "Towards dispersion relations for tapered core dielectric elliptical fibers," Optik, Vol. 118, 340-344, 2007.

28. Choudhury, P. K. and T. Yoshino, "On the propagation of power through liquid crystal clad optical fibers," Proc. SPIE, Vol. 5560, 380-385, 2004.

29. Snyder, A. W. and F. Ruhl, "Single-mode, single-polarization fibers made of birefringent material," J. Opt. Soc. Am., Vol. 73, 1165-1174, 1983.
doi:10.1364/JOSA.73.001165

30. Yijiang, C., "Anisotropic fiber with cylindrical polar axes," Appl. Phys. B, Vol. 42, 1-3, 1987.
doi:10.1007/BF00694765

31. Cherin, A. H., An Introduction to Optical Fibers, Chapt. 5, McGraw-Hill, New York, 1987.