Vol. 98
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-10-28
Simulation of Time Modulated Linear Antenna Arrays Using the FDTD Method
By
Progress In Electromagnetics Research, Vol. 98, 175-190, 2009
Abstract
Time modulated linear antenna arrays consisting of printed dipoles above a ground plane are simulated using the finite-difference time-domain (FDTD) method. The FDTD method brings great convenience to the investigation of the time domain responses of the time modulated arrays. In conjunction with the near-to-far field transformation in time domain, the far-field transient response can be computed to explain the physical essence of different time sequences. By employing the discrete Fourier Transform (DFT) and the frequency domain near-to-far field transformation, the radiation patterns at the frequencies of interest are obtained and are compared with the measured results. Simulation results show that the FDTD method is an effective and accurate approach for the full-wave simulation of time modulated antenna arrays.
Citation
Shiwen Yang, Yikai Chen, and Zai-Ping Nie, "Simulation of Time Modulated Linear Antenna Arrays Using the FDTD Method," Progress In Electromagnetics Research, Vol. 98, 175-190, 2009.
doi:10.2528/PIER09092507
References

1. Kummer, W. H., A. T. Villeneuve, T. S. Fong, and F. G. Terrio, "Ultra-low sidelobes from time-modulated arrays," IEEE Trans. Antennas Propagat., Vol. 11, No. 5, 633-639, Nov. 1963.

2. Yang, S., Y. B. Gan, and A. Qing, "Sideband suppression in time modulated linear arrays by the differential evolution algorithm," IEEE Antennas and Wireless Propagat. Lett., Vol. 1, 173-175, Dec. 2002.
doi:10.1109/LAWP.2002.807789

3. Yang, S., Y. B. Gan, and P. K. Tan, "Comparative study of low sidelobe time modulated linear arrays with different time schemes," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1443-1458, Nov. 2004.
doi:10.1163/1569393042954910

4. Yang, S., "Study of low sidelobe time modulated linear antenna arrays at millimeter-waves," International Journal of Infrared and Millimeter-waves, Vol. 26, No. 3, 443-456, Mar. 2005.
doi:10.1007/s10762-005-3443-9

5. Yang, S., Y. B. Gan, and P. K. Tan, "A new technique for power pattern synthesis in time modulated linear arrays," IEEE Antennas and Wireless Propagat. Lett., Vol. 2, 285-287, Dec. 2003.
doi:10.1109/LAWP.2003.821556

6. Yang, S., Y. B. Gan, A. Qing, and P. K. Tan, "Design of a uniform amplitude time modulated linear array with optimized time sequences," IEEE Trans. Antennas Propagat., Vol. 53, No. 7, 2337-2339, Jul. 2005.
doi:10.1109/TAP.2005.850765

7. Yang, S. and Z. Nie, "A review of the four dimensional antenna arrays," J. Electron. Sci. Tech. China, Vol. 4, No. 3, 193-201, Sep. 2006.

8. Yang, S., Y. B. Gan, and A. Qing, "Moving phase center antenna arrays with optimized static excitations," Microwave and Optical Tech. Lett., Vol. 38, No. 1, 83-85, Jul. 2003.
doi:10.1002/mop.10977

9. Yang, S., Y. B. Gan, and P. K. Tan, "Linear antenna arrays with bidirectional phase center motion," IEEE Trans. Antennas Propagat., Vol. 53, No. 5, 1829-1835, May 2005.
doi:10.1109/TAP.2005.846754

10. Yang, S. and Z. Nie, "Mutual coupling compensation in time modulated linear antenna arrays," IEEE Trans. Antennas Propagat., Vol. 53, No. 12, 4182-4185, Dec. 2005.
doi:10.1109/TAP.2005.860000

11. Zhu, X., S. Yang, and Z. Nie, "Full-wave simulation of time modulated linear antenna arrays in frequency domain," IEEE Trans. Antennas Propagat., Vol. 56, No. 5, 1479-1482, May 2008.
doi:10.1109/TAP.2008.922701

12. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, No. 8, 302-307, May 1966.

13. Lei, J.-Z., C.-H. Liang, W. Ding, and Y. Zhang, "EMC analysis of antennas mounted on electrically large platforms with parallel fdtd method," Progress In Electromagnetics Research, PIER 84, 205-220, 2008.

14. Yun, Z. and M. F. Iskander, "Implementation of floquet boundary conditions in FDTD analysis of periodic phased array antennas with skewed grid," Electromagnetics, Vol. 20, No. 5, 445-452, 2000.
doi:10.1080/027263400750064437

15. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159

16. Berenger, J. P., "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 127, No. 2, 363-379, 1996.
doi:10.1006/jcph.1996.0181

17. Yee, K. S., D. Ingham, and K. Shlager, "Time-domain extrapolation to the far field based on FDTD calculations," IEEE Trans. Antennas Propagat., Vol. 39, No. 3, 410-413, Mar. 1991.
doi:10.1109/8.76342

18. Luebbers, R. J., K. S. Kunz, M. Schneider, and F. Hunsberger, "A finite-difference time-domain near zone to far zone transformation," IEEE Trans. Antennas Propagat., Vol. 39, No. 4, 429-433, Apr. 1991.
doi:10.1109/8.81453

19. Reineix, A. and B. Jecko, "Analysis of microstrip patch antennas using finite difference time domain method," IEEE Trans. Antennas Propagat., Vol. 37, No. 11, 1361-1369, Nov. 1989.
doi:10.1109/8.43555

20. Umashankar, K. R. and A. Taflove, "A novel method to analyze electromagnetic scattering of complex objects," IEEE Trans. Electromagn. Compat., Vol. 24, No. 24, 397-405, Nov. 1982.

21. Taflove, A. K., R. Umashankar, and T. G. Jurgens, "Validation of FD-TD modeling of the radar cross section of three-dimensional structures spanning up to nine wavelengths," IEEE Trans. Antennas Propagat., Vol. 33, No. 6, 662-666, Jun. 1985.
doi:10.1109/TAP.1985.1143644