Vol. 91
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-04-08
Multilayer System of Lorentz/Drude Type Metamaterials with Dielectric Slabs and Its Application to Electromagnetic Filters
By
Progress In Electromagnetics Research, Vol. 91, 349-364, 2009
Abstract
In this work, frequency behavior of the multilayer structure comprised of double-negative (DNG) and dielectric slabs is presented in detail. The multilayer structure consists of N pieces DNG and dielectric slabs with different material properties and thicknesses. The incident electric field is assumed to be a monochromatic plane wave with any arbitrary polarization. The DNG layers are realized using the parameters of Lorentz/Drude type metamaterials. Transfer matrix method is used in the analysis to find the characteristics of the reflected and transmitted powers. Finally, the computations of the powers for two structures are demonstrated in numerical results for the application to design efficient filters at the microwave, millimeter wave, and optical frequency regions.
Citation
Cumali Sabah, and Savas Uckun, "Multilayer System of Lorentz/Drude Type Metamaterials with Dielectric Slabs and Its Application to Electromagnetic Filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

5. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

6. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Physical Review E, Vol. 64, 056625.1-15, 2001.
doi:10.1103/PhysRevE.64.056625

7. Tretyakov, S., I. Nefedov, C. Simovski, and S.Maslovski, Advances in Electromagnetics of Complex Media and Metamaterials, Kluwer, Dordrecht, MA, 2002.

8. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, 213902.1-4, 2002.
doi:10.1103/PhysRevLett.89.213902

9. Karkkainen, M. K., "Numerical study of wave propagation in uniaxially anisotropic Lorentzian backward-wave slabs," Physical Review E, Vol. 68, 026602.1-6, 2003.
doi:10.1103/PhysRevE.68.026602

10. Panoiu, N. C. and R. M. Jr. Osgood, "Numerical investigation of negative refractive index metamaterials at infrared and optical frequencies," Optics Communications, Vol. 223, 331-337, 2003.
doi:10.1016/S0030-4018(03)01690-0

11. Darmanyan, S. A., M. Neviere, and A. A. Zakhidov, "Surface modes at the interface of conventional and left-handed media," Optics Communications, Vol. 225, 233-240, 2003.
doi:10.1016/j.optcom.2003.07.047

12. Cui, T. J. and J. A. Kong, "Time-domain electromagnetic energy in a frequency-dispersive left-handed medium," Physical Review B, Vol. 70, 205106.1-7, 2004.

13. Erentok, A., P. L. Luljak, and R. W. Ziolkowski, "Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 1, 160-172, 2005.
doi:10.1109/TAP.2004.840534

14. Engheta, N. and R. W. Ziolkowski, "A positive future for doublenegative metamaterials," IEEE Transactions on Microwave Theory and Techniques, Vol. 4, 1535-1556, 2005.
doi:10.1109/TMTT.2005.845188

15. Mirza, I. O., S. Shi, and D. W. Prather, "Calculation of the dispersion diagrams of LHM using the 3D FDTD method," Microwave and Optical Technology Letters, Vol. 45, 394-397, 2005.
doi:10.1002/mop.20833

16. Wang, N. B., Y. C. Jiao, and F. S. Zhang, "Analysis of an electrically small cylindrical monopole surrounded by double negative materials using FDTD method ," Progress In Electromagnetics Research Symposium, 360, Hangzhou, China, 2005.

17. Engheta, N. and R. W. Ziolkowski, Metamaterials --- Physics and Engineering Explorations, IEEE-Wiley Press, Piscataway, NJ, 2006.

18. Ramadan, O., "An efficient state-space ADI-PML algorithm for truncating DNG metamaterial FDTD domains," Microwave and Optical Technology Letters, Vol. 49, 494-498, 2006.
doi:10.1002/mop.22162

19. Zedler, M., C. Caloz, and P. Russer, "3D composite right-left handed metamaterials with Lorentz-type dispersive elements," International Symposium on Signals, Systems and Electronics 2007 (ISSSE'07), 217-221, Montreal, QC, Canada, 2007.

20. Linden, S and M. Wegener, "International Symposium on Signals, Systems and Electronics 2007 (ISSSE'07)," Photonic metamaterials, 147-150, Montreal, QC, Canada, 2007.

21. Kong, S. C., Z. M. Thomas, X. Chen, B. I. Wu, T. M. Grzegorczyk, and J. A. Kong, "Band-stop filter based on a substrate embedded with metamaterials ," Microwave and Optical Technology Letters, Vol. 49, 530-534, 2007.
doi:10.1002/mop.22184

22. Sabah, C., G. Ogucu, and S. Uckun, "Power analysis of plane waves through a double-negative slab," IV. International Workshop on Electromagnetic Wave Scattering — EWS'2006, 11.61-66, Gebze Institute of Technology, Gebze, Kocaeli, Turkey, 2006.

23. Sabah, C. and S. Uckun, "Electromagnetic wave propagation through the frequency-dispersive and lossy double-negative slab," Opto-Electronics Review, Vol. 15, 133-143, 2007.
doi:10.2478/s11772-007-0011-y

24. Alu, A., F. Bilotti, N. Engheta, and F. Vegni, "Subwavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 55, 13-25, 2007.
doi:10.1109/TAP.2006.888401

25. Wang, M. Y., J. Xu, J. Wu, Y. Yan, and H. L. Li, "FDTD study on scattering of metallic column covered by double-negative metamaterial," Journal of Electromagnetic Wave Applications, Vol. 21, No. 14, 1905-1914, 2007.
doi:10.1163/156939307783152777

26. Manzanares-Martinez, J. and J. Gaspar-Armenta, "Direct integration of the constitutive relations for modeling dispersive metamaterials using the finite difference time-domain technique," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2297-2310, 2007.
doi:10.1163/156939307783134452

27. Ekmekci, E. and G. Turhan-Sayan, "Comparative investigation of resonance characteristics and electrical size of the doublesided SRR, BC-SRR and conventional SRR type metamaterials for varying substrate parameters," Progress In Electromagnetics Research B, Vol. 12, 35-62, 2009.
doi:10.2528/PIERB08120405

28. Wang, J., S. Qu, H. Ma, J. Hu, Y. Yang, X. Wu, Z. Xu, and M. Hao, "A dielectric resonator-based route to left-handed metamaterials," Progress In Electromagnetics Research B, Vol. 13, 133-150, 2009.
doi:10.2528/PIERB09011103

29. Pimenov, A., A. Loidl, K. Gehrke, V. Moshnyaga, and K. Samwer, "Negative refraction observed in a metallic ferromagnet in the gigahertz frequency range," Physical Review Letters, Vol. 98, 197401.1-197401.4, 2007.

30. Kussow, A. G. and A. Akyurtlu, "Negative refraction index in the magnetic semiconductor In2-xCrxO3: Theoretical analysis," Physical Review B, Vol. 78, 205202.1-205202.1, 2008.

31. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media ," Progress In Electromagnetics Research, PIER 35, 1-52, 2002.

32. Engheta, N., "Ideas for potential application of metamaterials with negative permittivity and permeability," Advances in Electromagnetics of Complex Media and Metamaterials, S. Zouhdi, A. H. Sihvola, and M. Arsalane (eds), 19-37, NATO Science Series, the Proceedings of NATO Advanced Research Workshop in Marrakech (Bianisotropics'2002), Kluwer Academic Publishers, Inc., 2002.

33. Chew, W. C., "Some reflections on double negative materials," Progress In Electromagnetics Research, PIER 51, 1-26, 2005.

34. Sabah, C. and S. Uckun, "Scattering characteristics of the stratified double-negative stacks using the frequency dispersive cold plasma medium," Zeitschrift fur Naturforschung A, Vol. 62a, 247-253, 2007.